亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Causality-Invariant Interactive Mining for Cross-Modal Similarity Learning

情态动词 人工智能 模态(人机交互) 计算机科学 嵌入 模式 不变(物理) 相似性(几何) 特征(语言学) 公制(单位) 模式识别(心理学) 样品(材料) 机器学习 数学 图像(数学) 社会学 哲学 经济 化学 高分子化学 色谱法 语言学 数学物理 社会科学 运营管理
作者
Jiexi Yan,Cheng Deng,Heng Huang,Wei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (9): 6216-6230 被引量:17
标识
DOI:10.1109/tpami.2024.3379752
摘要

In the real world, how to effectively learn consistent similarity measurement across different modalities is essential. Most of the existing similarity learning methods cannot deal well with cross-modal data due to the modality gap and have obvious performance degeneration when applied to cross-modal data. To tackle this problem, we propose a novel cross-modal similarity learning method, called Causality-Invariant Interactive Mining (CIIM), that can effectively capture informative relationships among different samples and modalities to derive the modality-consistent feature embeddings in the unified metric space. Our CIIM tackles the modality gap from two aspects, i.e., sample-wise and feature-wise. Specifically, we start from the sample-wise view and learn the single-modality and hybrid-modality proxies for exploring the cross-modal similarity with the elaborate metric losses. In this way, sample-to-sample and sample-to-proxy correlations are both taken into consideration. Furthermore, we conduct the causal intervention to eliminate the modality bias and reconstruct the invariant causal embedding in the feature-wise aspect. To this end, we force the learned embeddings to satisfy the specific properties of our causal mechanism and derive the causality-invariant feature embeddings in the unified metric space. Extensive experiments on two cross-modality tasks demonstrate the superiority of our proposed method over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
karstbing发布了新的文献求助10
17秒前
cy0824完成签到 ,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
Achuia完成签到,获得积分10
2分钟前
2分钟前
程若男完成签到,获得积分10
2分钟前
小唐完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
汉堡包应助Fairy采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Akim应助lngenuo采纳,获得30
4分钟前
4分钟前
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
4分钟前
Fairy发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
hb完成签到,获得积分10
5分钟前
紫熊完成签到,获得积分10
5分钟前
啸西风完成签到,获得积分10
5分钟前
孙严青完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
wanci应助野性的少司缘采纳,获得10
7分钟前
7分钟前
7分钟前
William完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714938
求助须知:如何正确求助?哪些是违规求助? 5228707
关于积分的说明 15273909
捐赠科研通 4866079
什么是DOI,文献DOI怎么找? 2612676
邀请新用户注册赠送积分活动 1562848
关于科研通互助平台的介绍 1520139