清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep transfer learning from limited source for abdominal CT and MR image segmentation

人工智能 计算机科学 图像分割 学习迁移 计算机视觉 分割
作者
Chetana Krishnan,Elizabeth Schmidt,Ezinwanne Onuoha,Michal Mrug,Carlos Cárdenas,Hyung Min Kim
标识
DOI:10.1117/12.3006814
摘要

Medical image segmentation benefits from machine learning advancements, offering potential automation. Yet, accuracy depends on substantial annotated data and significant computing resources. Transfer learning addresses these challenges by leveraging a model's knowledge from one task for another with minor adjustments. The idea is to adapt learned features to new tasks, even with differing datasets but shared characteristics. Studies explore the impact of using large source datasets for limited target datasets. This investigation focuses on transferring knowledge from a limited source to enhance model versatility across various tasks. Our goal involved transferring knowledge from an advanced model trained on T2 weighted MR images related to Autosomal Dominant Polycystic Kidney Disease (ADPKD) for kidney and cyst segmentation (referred to as "Lsource"). This transfer was directed towards five distinct target datasets: CT liver, CT kidneys, CT spleen, MRI kidneys, and CT multimodal data (target datasets 1 through 5). The primary objective was to achieve accurate segmentation on these target datasets while saving time and computational resources. This approach is especially valuable when obtaining a substantial, labeled mouse PKD MRI target dataset is challenging, and the source dataset itself is resource-intensive. Using transfer learning from source 1 onto target sets 1 to 5 resulted in mean Dice Similarity Coefficients (DSCs) of 0.94±0.04, 0.97±0.02, 0.95±0.03, 0.96±0.01, 0.93±0.02, respectively. Similarly, employing source 2 yielded mean DSCs of 0.95±0.04, 0.96±0.02, 0.95±0.02, 0.96±0.02, and 0.93±0.02 for the same target sets. Despite variations in pathological conditions, image characteristics, and imaging modalities, the transfer learning approach produced DSC values comparable to the initial published outcomes. This accomplishment was achieved with reduced training requirements, faster convergence times, and decreased computational complexities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长举报zxk求助涉嫌违规
12秒前
科研通AI6应助科研通管家采纳,获得30
20秒前
馆长举报violin求助涉嫌违规
27秒前
39秒前
馆长举报KK求助涉嫌违规
41秒前
林夕完成签到 ,获得积分10
45秒前
tutu完成签到,获得积分10
54秒前
hunajx完成签到,获得积分10
58秒前
馆长举报阿良求助涉嫌违规
1分钟前
馆长举报马也君求助涉嫌违规
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
馆长举报无语的玉米求助涉嫌违规
1分钟前
快乐学习每一天完成签到 ,获得积分10
1分钟前
菠萝包完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
gege完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
馆长举报英吉利25求助涉嫌违规
4分钟前
馆长举报四月求助涉嫌违规
5分钟前
5分钟前
5分钟前
顺利的雁梅完成签到 ,获得积分10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
两个榴莲完成签到,获得积分0
7分钟前
7分钟前
RLLLLLLL完成签到 ,获得积分10
7分钟前
7分钟前
yangxi发布了新的文献求助10
7分钟前
研友_VZG7GZ应助yangxi采纳,获得10
7分钟前
yangxi完成签到,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596449
求助须知:如何正确求助?哪些是违规求助? 4008332
关于积分的说明 12409129
捐赠科研通 3687356
什么是DOI,文献DOI怎么找? 2032344
邀请新用户注册赠送积分活动 1065591
科研通“疑难数据库(出版商)”最低求助积分说明 950877