Deep transfer learning from limited source for abdominal CT and MR image segmentation

人工智能 计算机科学 图像分割 学习迁移 计算机视觉 分割
作者
Chetana Krishnan,Elizabeth Schmidt,Ezinwanne Onuoha,Michal Mrug,Carlos Cárdenas,Hyung Min Kim
标识
DOI:10.1117/12.3006814
摘要

Medical image segmentation benefits from machine learning advancements, offering potential automation. Yet, accuracy depends on substantial annotated data and significant computing resources. Transfer learning addresses these challenges by leveraging a model's knowledge from one task for another with minor adjustments. The idea is to adapt learned features to new tasks, even with differing datasets but shared characteristics. Studies explore the impact of using large source datasets for limited target datasets. This investigation focuses on transferring knowledge from a limited source to enhance model versatility across various tasks. Our goal involved transferring knowledge from an advanced model trained on T2 weighted MR images related to Autosomal Dominant Polycystic Kidney Disease (ADPKD) for kidney and cyst segmentation (referred to as "Lsource"). This transfer was directed towards five distinct target datasets: CT liver, CT kidneys, CT spleen, MRI kidneys, and CT multimodal data (target datasets 1 through 5). The primary objective was to achieve accurate segmentation on these target datasets while saving time and computational resources. This approach is especially valuable when obtaining a substantial, labeled mouse PKD MRI target dataset is challenging, and the source dataset itself is resource-intensive. Using transfer learning from source 1 onto target sets 1 to 5 resulted in mean Dice Similarity Coefficients (DSCs) of 0.94±0.04, 0.97±0.02, 0.95±0.03, 0.96±0.01, 0.93±0.02, respectively. Similarly, employing source 2 yielded mean DSCs of 0.95±0.04, 0.96±0.02, 0.95±0.02, 0.96±0.02, and 0.93±0.02 for the same target sets. Despite variations in pathological conditions, image characteristics, and imaging modalities, the transfer learning approach produced DSC values comparable to the initial published outcomes. This accomplishment was achieved with reduced training requirements, faster convergence times, and decreased computational complexities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咿咿呀呀发布了新的文献求助10
刚刚
xiangjun发布了新的文献求助20
1秒前
Orange应助温柔的蛋挞采纳,获得10
1秒前
imi应助小y采纳,获得10
1秒前
标致醉波完成签到,获得积分10
2秒前
2秒前
2秒前
FashionBoy应助行歌采纳,获得10
3秒前
3秒前
Conccuc发布了新的文献求助10
3秒前
典雅的觅儿完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助梓歆采纳,获得10
5秒前
Ni完成签到,获得积分20
5秒前
5秒前
为学日益发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
杨小绿zbsl发布了新的文献求助10
7秒前
研友_ng9v28完成签到,获得积分10
7秒前
坦率芝麻完成签到,获得积分10
7秒前
爆米花应助正直的hh采纳,获得10
7秒前
科研小白发布了新的文献求助10
8秒前
sldl完成签到,获得积分10
8秒前
猪猪hero发布了新的文献求助10
8秒前
Ray羽曦~发布了新的文献求助10
9秒前
Akim应助可靠的0采纳,获得10
9秒前
9秒前
9秒前
9秒前
赘婿应助rose采纳,获得10
9秒前
认真雅阳完成签到,获得积分10
10秒前
李故完成签到,获得积分10
10秒前
yxy发布了新的文献求助30
10秒前
10秒前
大方平蓝完成签到,获得积分10
10秒前
mmagg发布了新的文献求助10
10秒前
10秒前
淳于文昊完成签到,获得积分20
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974602
求助须知:如何正确求助?哪些是违规求助? 3519026
关于积分的说明 11196787
捐赠科研通 3255127
什么是DOI,文献DOI怎么找? 1797693
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130