亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep transfer learning from limited source for abdominal CT and MR image segmentation

人工智能 计算机科学 图像分割 学习迁移 计算机视觉 分割
作者
Chetana Krishnan,Elizabeth Schmidt,Ezinwanne Onuoha,Michal Mrug,Carlos Cárdenas,Hyung Min Kim
标识
DOI:10.1117/12.3006814
摘要

Medical image segmentation benefits from machine learning advancements, offering potential automation. Yet, accuracy depends on substantial annotated data and significant computing resources. Transfer learning addresses these challenges by leveraging a model's knowledge from one task for another with minor adjustments. The idea is to adapt learned features to new tasks, even with differing datasets but shared characteristics. Studies explore the impact of using large source datasets for limited target datasets. This investigation focuses on transferring knowledge from a limited source to enhance model versatility across various tasks. Our goal involved transferring knowledge from an advanced model trained on T2 weighted MR images related to Autosomal Dominant Polycystic Kidney Disease (ADPKD) for kidney and cyst segmentation (referred to as "Lsource"). This transfer was directed towards five distinct target datasets: CT liver, CT kidneys, CT spleen, MRI kidneys, and CT multimodal data (target datasets 1 through 5). The primary objective was to achieve accurate segmentation on these target datasets while saving time and computational resources. This approach is especially valuable when obtaining a substantial, labeled mouse PKD MRI target dataset is challenging, and the source dataset itself is resource-intensive. Using transfer learning from source 1 onto target sets 1 to 5 resulted in mean Dice Similarity Coefficients (DSCs) of 0.94±0.04, 0.97±0.02, 0.95±0.03, 0.96±0.01, 0.93±0.02, respectively. Similarly, employing source 2 yielded mean DSCs of 0.95±0.04, 0.96±0.02, 0.95±0.02, 0.96±0.02, and 0.93±0.02 for the same target sets. Despite variations in pathological conditions, image characteristics, and imaging modalities, the transfer learning approach produced DSC values comparable to the initial published outcomes. This accomplishment was achieved with reduced training requirements, faster convergence times, and decreased computational complexities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴塞罗那小铁匠完成签到,获得积分10
2秒前
麻辣香锅发布了新的文献求助10
27秒前
41秒前
50秒前
量子星尘发布了新的文献求助10
57秒前
科研通AI6应助eliauk采纳,获得10
57秒前
1分钟前
史育川发布了新的文献求助10
1分钟前
Smithjiang完成签到,获得积分10
1分钟前
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
天天快乐应助叽叽采纳,获得10
1分钟前
LJL完成签到 ,获得积分10
1分钟前
1分钟前
麻辣香锅发布了新的文献求助10
1分钟前
科研通AI6应助麻辣香锅采纳,获得10
1分钟前
慕青应助李铃锐采纳,获得10
2分钟前
喻初原完成签到 ,获得积分10
2分钟前
2分钟前
口香糖探长发布了新的文献求助100
2分钟前
香蕉觅云应助Nov_snowr采纳,获得30
2分钟前
jumbaumba完成签到,获得积分10
2分钟前
上官若男应助幸福的星星采纳,获得10
2分钟前
jingzhaohe完成签到,获得积分10
2分钟前
2分钟前
2分钟前
xiaoyingyu发布了新的文献求助30
3分钟前
3分钟前
李铃锐发布了新的文献求助10
3分钟前
吨吨发布了新的文献求助20
3分钟前
orixero应助昊昊采纳,获得10
3分钟前
3分钟前
幸福的星星完成签到,获得积分10
3分钟前
3分钟前
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650843
求助须知:如何正确求助?哪些是违规求助? 4781799
关于积分的说明 15052655
捐赠科研通 4809623
什么是DOI,文献DOI怎么找? 2572434
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487437