Deep transfer learning from limited source for abdominal CT and MR image segmentation

人工智能 计算机科学 图像分割 学习迁移 计算机视觉 分割
作者
Chetana Krishnan,Elizabeth Schmidt,Ezinwanne Onuoha,Michal Mrug,Carlos Cárdenas,Hyung Min Kim
标识
DOI:10.1117/12.3006814
摘要

Medical image segmentation benefits from machine learning advancements, offering potential automation. Yet, accuracy depends on substantial annotated data and significant computing resources. Transfer learning addresses these challenges by leveraging a model's knowledge from one task for another with minor adjustments. The idea is to adapt learned features to new tasks, even with differing datasets but shared characteristics. Studies explore the impact of using large source datasets for limited target datasets. This investigation focuses on transferring knowledge from a limited source to enhance model versatility across various tasks. Our goal involved transferring knowledge from an advanced model trained on T2 weighted MR images related to Autosomal Dominant Polycystic Kidney Disease (ADPKD) for kidney and cyst segmentation (referred to as "Lsource"). This transfer was directed towards five distinct target datasets: CT liver, CT kidneys, CT spleen, MRI kidneys, and CT multimodal data (target datasets 1 through 5). The primary objective was to achieve accurate segmentation on these target datasets while saving time and computational resources. This approach is especially valuable when obtaining a substantial, labeled mouse PKD MRI target dataset is challenging, and the source dataset itself is resource-intensive. Using transfer learning from source 1 onto target sets 1 to 5 resulted in mean Dice Similarity Coefficients (DSCs) of 0.94±0.04, 0.97±0.02, 0.95±0.03, 0.96±0.01, 0.93±0.02, respectively. Similarly, employing source 2 yielded mean DSCs of 0.95±0.04, 0.96±0.02, 0.95±0.02, 0.96±0.02, and 0.93±0.02 for the same target sets. Despite variations in pathological conditions, image characteristics, and imaging modalities, the transfer learning approach produced DSC values comparable to the initial published outcomes. This accomplishment was achieved with reduced training requirements, faster convergence times, and decreased computational complexities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐唐完成签到 ,获得积分10
1秒前
最棒哒完成签到 ,获得积分10
1秒前
鸣鸣完成签到,获得积分10
2秒前
123321完成签到 ,获得积分10
3秒前
卓若之完成签到 ,获得积分10
4秒前
苯二氮卓完成签到,获得积分10
5秒前
温暖完成签到 ,获得积分10
7秒前
mojomars完成签到,获得积分10
7秒前
时尚雨兰完成签到,获得积分0
8秒前
一叶知秋完成签到,获得积分10
10秒前
叶123完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
Minicoper发布了新的文献求助10
12秒前
背书强完成签到 ,获得积分10
13秒前
淡然以柳完成签到 ,获得积分10
15秒前
dolabmu完成签到 ,获得积分10
18秒前
崔崔完成签到 ,获得积分10
22秒前
SYLH应助xcxc采纳,获得10
23秒前
wp4455777完成签到,获得积分10
24秒前
十一完成签到,获得积分10
24秒前
ru完成签到 ,获得积分10
26秒前
慧木完成签到 ,获得积分10
26秒前
WW完成签到 ,获得积分10
27秒前
小高同学完成签到,获得积分10
28秒前
轻轻1完成签到,获得积分10
31秒前
32秒前
大橙子发布了新的文献求助10
36秒前
iuhgnor完成签到,获得积分10
39秒前
可夫司机完成签到 ,获得积分10
42秒前
yang完成签到,获得积分10
44秒前
一1完成签到 ,获得积分10
46秒前
jiaolulu完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
48秒前
爆米花应助LiZhao采纳,获得10
48秒前
轻轻完成签到,获得积分10
51秒前
Orange应助jiaolulu采纳,获得10
51秒前
xcxc完成签到,获得积分10
53秒前
water应助科研通管家采纳,获得50
53秒前
53秒前
默存完成签到,获得积分10
56秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022