亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep transfer learning from limited source for abdominal CT and MR image segmentation

人工智能 计算机科学 图像分割 学习迁移 计算机视觉 分割
作者
Chetana Krishnan,Elizabeth Schmidt,Ezinwanne Onuoha,Michal Mrug,Carlos Cárdenas,Hyung Min Kim
标识
DOI:10.1117/12.3006814
摘要

Medical image segmentation benefits from machine learning advancements, offering potential automation. Yet, accuracy depends on substantial annotated data and significant computing resources. Transfer learning addresses these challenges by leveraging a model's knowledge from one task for another with minor adjustments. The idea is to adapt learned features to new tasks, even with differing datasets but shared characteristics. Studies explore the impact of using large source datasets for limited target datasets. This investigation focuses on transferring knowledge from a limited source to enhance model versatility across various tasks. Our goal involved transferring knowledge from an advanced model trained on T2 weighted MR images related to Autosomal Dominant Polycystic Kidney Disease (ADPKD) for kidney and cyst segmentation (referred to as "Lsource"). This transfer was directed towards five distinct target datasets: CT liver, CT kidneys, CT spleen, MRI kidneys, and CT multimodal data (target datasets 1 through 5). The primary objective was to achieve accurate segmentation on these target datasets while saving time and computational resources. This approach is especially valuable when obtaining a substantial, labeled mouse PKD MRI target dataset is challenging, and the source dataset itself is resource-intensive. Using transfer learning from source 1 onto target sets 1 to 5 resulted in mean Dice Similarity Coefficients (DSCs) of 0.94±0.04, 0.97±0.02, 0.95±0.03, 0.96±0.01, 0.93±0.02, respectively. Similarly, employing source 2 yielded mean DSCs of 0.95±0.04, 0.96±0.02, 0.95±0.02, 0.96±0.02, and 0.93±0.02 for the same target sets. Despite variations in pathological conditions, image characteristics, and imaging modalities, the transfer learning approach produced DSC values comparable to the initial published outcomes. This accomplishment was achieved with reduced training requirements, faster convergence times, and decreased computational complexities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安雯完成签到 ,获得积分10
刚刚
刚刚
骆其为清完成签到,获得积分10
2秒前
LEMON发布了新的文献求助10
4秒前
5秒前
hoy完成签到 ,获得积分10
6秒前
自然怀蕾发布了新的文献求助10
8秒前
阿幽发布了新的文献求助10
11秒前
伟大的鲁路皇完成签到,获得积分10
13秒前
梨炒栗子完成签到,获得积分10
17秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
21秒前
牧羊人发布了新的文献求助10
25秒前
null应助Pendulium采纳,获得10
31秒前
CNY完成签到 ,获得积分10
33秒前
35秒前
38秒前
量子星尘发布了新的文献求助10
47秒前
安静的从梦完成签到 ,获得积分10
49秒前
陈杰完成签到,获得积分10
55秒前
阿幽完成签到 ,获得积分10
56秒前
1分钟前
zachary009完成签到 ,获得积分10
1分钟前
科研通AI6应助字母采纳,获得10
1分钟前
CapQing应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
旺仔先生完成签到,获得积分0
1分钟前
聪明勇敢有力气完成签到 ,获得积分10
1分钟前
1分钟前
MasterE完成签到,获得积分10
1分钟前
pia叽完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
MasterE发布了新的文献求助10
1分钟前
lyh完成签到,获得积分10
1分钟前
null应助Pendulium采纳,获得10
1分钟前
点点发布了新的文献求助10
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
乐乐应助牧羊人采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595648
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14817947
捐赠科研通 4651117
什么是DOI,文献DOI怎么找? 2535539
邀请新用户注册赠送积分活动 1503494
关于科研通互助平台的介绍 1469743