Deep transfer learning from limited source for abdominal CT and MR image segmentation

人工智能 计算机科学 图像分割 学习迁移 计算机视觉 分割
作者
Chetana Krishnan,Elizabeth Schmidt,Ezinwanne Onuoha,Michal Mrug,Carlos Cárdenas,Hyung Min Kim
标识
DOI:10.1117/12.3006814
摘要

Medical image segmentation benefits from machine learning advancements, offering potential automation. Yet, accuracy depends on substantial annotated data and significant computing resources. Transfer learning addresses these challenges by leveraging a model's knowledge from one task for another with minor adjustments. The idea is to adapt learned features to new tasks, even with differing datasets but shared characteristics. Studies explore the impact of using large source datasets for limited target datasets. This investigation focuses on transferring knowledge from a limited source to enhance model versatility across various tasks. Our goal involved transferring knowledge from an advanced model trained on T2 weighted MR images related to Autosomal Dominant Polycystic Kidney Disease (ADPKD) for kidney and cyst segmentation (referred to as "Lsource"). This transfer was directed towards five distinct target datasets: CT liver, CT kidneys, CT spleen, MRI kidneys, and CT multimodal data (target datasets 1 through 5). The primary objective was to achieve accurate segmentation on these target datasets while saving time and computational resources. This approach is especially valuable when obtaining a substantial, labeled mouse PKD MRI target dataset is challenging, and the source dataset itself is resource-intensive. Using transfer learning from source 1 onto target sets 1 to 5 resulted in mean Dice Similarity Coefficients (DSCs) of 0.94±0.04, 0.97±0.02, 0.95±0.03, 0.96±0.01, 0.93±0.02, respectively. Similarly, employing source 2 yielded mean DSCs of 0.95±0.04, 0.96±0.02, 0.95±0.02, 0.96±0.02, and 0.93±0.02 for the same target sets. Despite variations in pathological conditions, image characteristics, and imaging modalities, the transfer learning approach produced DSC values comparable to the initial published outcomes. This accomplishment was achieved with reduced training requirements, faster convergence times, and decreased computational complexities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂的板凳完成签到,获得积分10
3秒前
爱跳舞的科研小白完成签到,获得积分10
4秒前
夹心大王完成签到,获得积分10
4秒前
一颗菠菜完成签到,获得积分10
5秒前
6秒前
夹心大王发布了新的文献求助10
7秒前
hww完成签到,获得积分20
7秒前
8秒前
含糊的文涛完成签到,获得积分10
9秒前
10秒前
11秒前
鸭子完成签到,获得积分10
11秒前
索大学术完成签到,获得积分10
11秒前
大模型应助赵振辉采纳,获得10
12秒前
阳光万声发布了新的文献求助10
12秒前
13秒前
犬豆斑完成签到,获得积分10
13秒前
Akashi发布了新的文献求助10
14秒前
小peng发布了新的文献求助10
15秒前
锦李完成签到,获得积分10
16秒前
善学以致用应助hww采纳,获得10
16秒前
17秒前
remyren完成签到,获得积分20
17秒前
九三发布了新的文献求助20
17秒前
CNcattle完成签到,获得积分10
18秒前
18秒前
小蘑菇应助戴先森采纳,获得10
18秒前
在水一方应助陶渊明采纳,获得10
19秒前
19秒前
19秒前
飘逸白猫关注了科研通微信公众号
20秒前
hujin应助晴云采纳,获得10
21秒前
CipherSage应助livinglast采纳,获得10
21秒前
22秒前
科研通AI2S应助下颌磨牙钳采纳,获得10
23秒前
小peng完成签到,获得积分10
23秒前
23秒前
几酌应助shuguang采纳,获得10
24秒前
lll发布了新的文献求助10
24秒前
咕咕鸡发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163395
求助须知:如何正确求助?哪些是违规求助? 2814263
关于积分的说明 7904141
捐赠科研通 2473792
什么是DOI,文献DOI怎么找? 1317118
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602187