已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep transfer learning from limited source for abdominal CT and MR image segmentation

人工智能 计算机科学 图像分割 学习迁移 计算机视觉 分割
作者
Chetana Krishnan,Elizabeth Schmidt,Ezinwanne Onuoha,Michal Mrug,Carlos Cárdenas,Hyung Min Kim
标识
DOI:10.1117/12.3006814
摘要

Medical image segmentation benefits from machine learning advancements, offering potential automation. Yet, accuracy depends on substantial annotated data and significant computing resources. Transfer learning addresses these challenges by leveraging a model's knowledge from one task for another with minor adjustments. The idea is to adapt learned features to new tasks, even with differing datasets but shared characteristics. Studies explore the impact of using large source datasets for limited target datasets. This investigation focuses on transferring knowledge from a limited source to enhance model versatility across various tasks. Our goal involved transferring knowledge from an advanced model trained on T2 weighted MR images related to Autosomal Dominant Polycystic Kidney Disease (ADPKD) for kidney and cyst segmentation (referred to as "Lsource"). This transfer was directed towards five distinct target datasets: CT liver, CT kidneys, CT spleen, MRI kidneys, and CT multimodal data (target datasets 1 through 5). The primary objective was to achieve accurate segmentation on these target datasets while saving time and computational resources. This approach is especially valuable when obtaining a substantial, labeled mouse PKD MRI target dataset is challenging, and the source dataset itself is resource-intensive. Using transfer learning from source 1 onto target sets 1 to 5 resulted in mean Dice Similarity Coefficients (DSCs) of 0.94±0.04, 0.97±0.02, 0.95±0.03, 0.96±0.01, 0.93±0.02, respectively. Similarly, employing source 2 yielded mean DSCs of 0.95±0.04, 0.96±0.02, 0.95±0.02, 0.96±0.02, and 0.93±0.02 for the same target sets. Despite variations in pathological conditions, image characteristics, and imaging modalities, the transfer learning approach produced DSC values comparable to the initial published outcomes. This accomplishment was achieved with reduced training requirements, faster convergence times, and decreased computational complexities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OE完成签到,获得积分10
1秒前
you发布了新的文献求助10
3秒前
小人物的坚持完成签到 ,获得积分10
3秒前
丘比特应助sleeping采纳,获得10
4秒前
dustomb发布了新的文献求助30
4秒前
orixero应助Luvvv采纳,获得10
6秒前
wdlc完成签到,获得积分10
6秒前
科研通AI6应助生动友容采纳,获得10
8秒前
yiannanan完成签到 ,获得积分10
8秒前
希望天下0贩的0应助hp采纳,获得10
9秒前
13秒前
14秒前
ZHC完成签到,获得积分10
16秒前
的y完成签到,获得积分10
16秒前
迷路的珠发布了新的文献求助10
19秒前
dustomb完成签到,获得积分10
20秒前
浅笑_随风完成签到,获得积分10
20秒前
神鸢完成签到,获得积分10
20秒前
ZHC发布了新的文献求助10
20秒前
ldym完成签到,获得积分10
20秒前
无花果应助甜蜜的从灵采纳,获得10
23秒前
水空明完成签到,获得积分10
23秒前
23秒前
you完成签到,获得积分20
24秒前
量子星尘发布了新的文献求助10
25秒前
娲皇后裔完成签到 ,获得积分10
26秒前
闪闪的从安完成签到,获得积分10
27秒前
xiaoyao发布了新的文献求助10
27秒前
30秒前
风语者完成签到 ,获得积分10
31秒前
LL爱读书完成签到,获得积分10
31秒前
31秒前
Hikx发布了新的文献求助10
33秒前
ZYF发布了新的文献求助20
34秒前
随便取发布了新的文献求助10
34秒前
35秒前
大模型应助ldym采纳,获得10
36秒前
marcg4发布了新的文献求助10
38秒前
领导范儿应助Davidjin采纳,获得10
38秒前
斯文败类应助Davidjin采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599474
求助须知:如何正确求助?哪些是违规求助? 4685116
关于积分的说明 14837894
捐赠科研通 4668470
什么是DOI,文献DOI怎么找? 2537994
邀请新用户注册赠送积分活动 1505428
关于科研通互助平台的介绍 1470784