Clinical and CT Quantitative Features for Predicting Liver Metastases in Patients with Pancreatic Neuroendocrine Tumors: A Study with Prospective/External Validation

医学 神经内分泌肿瘤 前瞻性队列研究 胰腺神经内分泌肿瘤 内科学 胰腺 放射科 病理
作者
Yao Pan,Haiyan Chen,Jieyu Chen,Xiaojie Wang,Jia-Ping Zhou,Lei Shi,Ri‐Sheng Yu
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (9): 3612-3619 被引量:1
标识
DOI:10.1016/j.acra.2024.02.002
摘要

We aimed to evaluate clinical characteristics and quantitative CT imaging features for the prediction of liver metastases (LMs) in patients with pancreatic neuroendocrine tumors (PNETs).Patients diagnosed with pathologically confirmed PNETs were included, 133 patients were in the training group, 22 patients in the prospective internal validation group, and 28 patients in the external validation group. Clinical information and quantitative features were collected. The independent variables for predicting LMs were confirmed through the implementation of univariate and multivariate logistic analyses. The diagnostic performance was evaluated by conducting receiver operating characteristic curves for predicting LMs in the training and validation groups.PNETs with LMs demonstrated significantly larger diameter and lower arterial/portal tumor-parenchymal enhancement ratio, arterial/portal absolute enhancement value (AAE/PAE value) (p < 0.05). After multivariate analyses, A high level of tumor marker (odds ratio (OR): 5.32; 95% CI, 1.54-18.35), maximum diameter larger than 24.6 mm (OR: 7.46; 95% CI, 1.70-32.72), and AAE value ≤ 51 HU (OR: 4.99; 95% CI, 0.93-26.95) were independent positive predictors of LMs in patients with PNETs, with area under curve (AUC) of 0.852 (95%CI, 0.781-0.907). The AUCs for prospective internal and external validation groups were 0.883 (95% CI, 0.686-0.977) and 0.789 (95% CI, 0.602-0.916), respectively.Tumor marker, maximum diameter and absolute enhancement value in arterial phase were independent predictors with good predictive performance for the prediction of LMs in patients with PNETs. Combining clinical and quantitative features may facilitate the attainment of good predictive precision in predicting LMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洗衣液谢完成签到 ,获得积分10
2秒前
槿言完成签到 ,获得积分10
5秒前
秋殤完成签到 ,获得积分10
6秒前
7秒前
害怕的冰颜完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
儒雅的蜜粉完成签到,获得积分10
11秒前
缥缈的闭月完成签到,获得积分10
11秒前
永不言弃完成签到 ,获得积分10
12秒前
djbj2022发布了新的文献求助10
12秒前
一心完成签到,获得积分10
14秒前
WXyue完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
ATEVYG完成签到 ,获得积分10
19秒前
19秒前
犹豫的若完成签到,获得积分10
19秒前
Java完成签到,获得积分10
20秒前
坦率雪枫完成签到 ,获得积分10
20秒前
22秒前
rainchan0227完成签到,获得积分10
23秒前
风趣霆完成签到,获得积分10
26秒前
标致的泥猴桃完成签到,获得积分10
27秒前
落叶听风笑完成签到,获得积分10
27秒前
Kyle完成签到,获得积分10
27秒前
赧赧完成签到 ,获得积分10
29秒前
传奇3应助akanenn999采纳,获得10
35秒前
yar完成签到 ,获得积分10
36秒前
38秒前
沉静的清涟完成签到,获得积分10
41秒前
求助人员完成签到,获得积分10
41秒前
吕圆圆圆啊完成签到,获得积分10
43秒前
pp完成签到 ,获得积分10
44秒前
秋雨完成签到 ,获得积分10
44秒前
山东人在南京完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
45秒前
七QI完成签到 ,获得积分10
45秒前
AUGKING27完成签到 ,获得积分10
46秒前
jialin完成签到,获得积分10
48秒前
量子星尘发布了新的文献求助10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986