Clinical and CT Quantitative Features for Predicting Liver Metastases in Patients with Pancreatic Neuroendocrine Tumors: A Study with Prospective/External Validation

医学 神经内分泌肿瘤 前瞻性队列研究 胰腺神经内分泌肿瘤 内科学 胰腺 放射科 病理
作者
Yao Pan,Haiyan Chen,Jieyu Chen,Xiaojie Wang,Jia-Ping Zhou,Lei Shi,Ri‐Sheng Yu
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (9): 3612-3619 被引量:1
标识
DOI:10.1016/j.acra.2024.02.002
摘要

We aimed to evaluate clinical characteristics and quantitative CT imaging features for the prediction of liver metastases (LMs) in patients with pancreatic neuroendocrine tumors (PNETs).Patients diagnosed with pathologically confirmed PNETs were included, 133 patients were in the training group, 22 patients in the prospective internal validation group, and 28 patients in the external validation group. Clinical information and quantitative features were collected. The independent variables for predicting LMs were confirmed through the implementation of univariate and multivariate logistic analyses. The diagnostic performance was evaluated by conducting receiver operating characteristic curves for predicting LMs in the training and validation groups.PNETs with LMs demonstrated significantly larger diameter and lower arterial/portal tumor-parenchymal enhancement ratio, arterial/portal absolute enhancement value (AAE/PAE value) (p < 0.05). After multivariate analyses, A high level of tumor marker (odds ratio (OR): 5.32; 95% CI, 1.54-18.35), maximum diameter larger than 24.6 mm (OR: 7.46; 95% CI, 1.70-32.72), and AAE value ≤ 51 HU (OR: 4.99; 95% CI, 0.93-26.95) were independent positive predictors of LMs in patients with PNETs, with area under curve (AUC) of 0.852 (95%CI, 0.781-0.907). The AUCs for prospective internal and external validation groups were 0.883 (95% CI, 0.686-0.977) and 0.789 (95% CI, 0.602-0.916), respectively.Tumor marker, maximum diameter and absolute enhancement value in arterial phase were independent predictors with good predictive performance for the prediction of LMs in patients with PNETs. Combining clinical and quantitative features may facilitate the attainment of good predictive precision in predicting LMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到 ,获得积分10
2秒前
蓝天发布了新的文献求助10
4秒前
135完成签到 ,获得积分10
4秒前
宫立辉发布了新的文献求助10
4秒前
坚定岂愈完成签到,获得积分10
6秒前
8秒前
豆子完成签到,获得积分10
9秒前
LaTeXer应助陈陈采纳,获得80
9秒前
迷路芝麻完成签到,获得积分10
10秒前
10秒前
BONe完成签到,获得积分10
10秒前
苟玉琴完成签到,获得积分10
11秒前
过时的不评完成签到,获得积分10
11秒前
12秒前
传奇3应助yu采纳,获得10
13秒前
13秒前
14秒前
15秒前
ppsweek发布了新的文献求助10
15秒前
小南子完成签到,获得积分10
16秒前
su完成签到,获得积分10
16秒前
135发布了新的文献求助50
16秒前
zjh发布了新的文献求助10
16秒前
平常艳一发布了新的文献求助10
16秒前
16秒前
lll发布了新的文献求助10
17秒前
冰月雪蝶发布了新的文献求助10
17秒前
星辰大海应助朱晖采纳,获得10
18秒前
jerry_x发布了新的文献求助10
20秒前
20秒前
wsysweet完成签到,获得积分10
21秒前
沧海云完成签到 ,获得积分0
22秒前
一去完成签到 ,获得积分10
22秒前
彭于晏应助ppsweek采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
Hello应助67n采纳,获得10
23秒前
蜘蛛道理完成签到 ,获得积分10
24秒前
25秒前
香蕉觅云应助Sober采纳,获得10
27秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774957
求助须知:如何正确求助?哪些是违规求助? 5620753
关于积分的说明 15437173
捐赠科研通 4907368
什么是DOI,文献DOI怎么找? 2640630
邀请新用户注册赠送积分活动 1588544
关于科研通互助平台的介绍 1543412