MpMsCFMA-Net: Multi-path Multi-scale Context Feature Mixup and Aggregation Network for medical image segmentation

计算机科学 编码器 背景(考古学) 人工智能 编码(内存) 卷积神经网络 分割 路径(计算) 特征(语言学) 图像分割 编码 编码(集合论) 特征提取 模式识别(心理学) 数据挖掘 计算机网络 语言学 操作系统 程序设计语言 基因 生物 集合(抽象数据类型) 哲学 古生物学 生物化学 化学
作者
Miao Che,Zongfei Wu,Jiahao Zhang,Xilin Liu,Shuai Zhang,Yifei Liu,Shu Feng,Yongfei Wu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108292-108292 被引量:6
标识
DOI:10.1016/j.engappai.2024.108292
摘要

Automatic and accurate medical image segmentation is a crucial step for clinical diagnosis and treatment planning of diseases. The advanced convolutional neural network (CNN) approaches based on the encoder–decoder structure have achieved state-of-the-art performances in many different medical image segmentation tasks. However, existing networks have insufficient capability of extracting the context information in each encoding stage, so they cannot effectively perceive multi-scale objects in images. In addition, the continuous down-sampling and convolution operations in the encoding stage lead to much loss of the detailed information, resulting in poor segmentation performance. In this paper, we propose a Multi-path Multi-scale Context Feature MixUp and Aggregation Network (named MpMsCFMA-Net) which fuses and aggregates multi-path features with multi-scale context information to address these issues. Based on the encoder–decoder structure, we first design the encoder to encode the semantic and detailed information of input images and introduce multi-scale context extraction module in each encoding stage. Furthermore, we design multiple features mixup module between the encoder and the decoder, aiming at providing different levels of global context information for the decoder by reconstructing skip-connection. Finally, we introduce the decoder with deeper features aggregation to better fuse multi-scale context information across layers. Experimental results on four public medical image datasets confirm that our proposed network achieves promising results and outperforms other state-of-the-art methods in most of evaluation metrics. The source code will be publicly available at https://github.com/tricksterANDthug/MpMsCFMA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮怪完成签到,获得积分10
1秒前
聪慧千万发布了新的文献求助10
1秒前
雪ノ下詩乃完成签到,获得积分10
1秒前
正直凌文完成签到,获得积分10
1秒前
LL发布了新的文献求助10
1秒前
海棠花未眠完成签到,获得积分10
3秒前
3秒前
4秒前
Happyness应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得20
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
无花果应助宋嘉新采纳,获得10
5秒前
yar应助科研通管家采纳,获得10
5秒前
Happyness应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得30
5秒前
丘比特应助liang采纳,获得30
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
yar应助科研通管家采纳,获得10
6秒前
Xiaoxiao应助科研通管家采纳,获得10
6秒前
boxi完成签到,获得积分10
6秒前
iNk应助科研通管家采纳,获得10
6秒前
天天快乐应助无限绿旋采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
qiaokizhang完成签到,获得积分10
6秒前
6秒前
6秒前
iNk应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
ED应助多喝开开采纳,获得10
6秒前
yar应助科研通管家采纳,获得10
6秒前
6秒前
Happyness应助科研通管家采纳,获得10
6秒前
Gauss应助科研通管家采纳,获得30
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得30
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582