Deep learning in two-dimensional materials: Characterization, prediction, and design

深度学习 计算机科学 表征(材料科学) 人工智能 鉴定(生物学) 功能(生物学) 生成语法 数据科学 机器学习 纳米技术 材料科学 植物 进化生物学 生物
作者
Xinqin Meng,Chengbing Qin,Xilong Liang,Guofeng Zhang,Ruiyun Chen,Jianyong Hu,Zhichun Yang,Jianzhong Huo,Liantuan Xiao,Suotang Jia
出处
期刊:Frontiers of Physics in China [Springer Nature]
卷期号:19 (5) 被引量:1
标识
DOI:10.1007/s11467-024-1394-7
摘要

Abstract Since the isolation of graphene, two-dimensional (2D) materials have attracted increasing interest because of their excellent chemical and physical properties, as well as promising applications. Nonetheless, particular challenges persist in their further development, particularly in the effective identification of diverse 2D materials, the domains of large-scale and high-precision characterization, also intelligent function prediction and design. These issues are mainly solved by computational techniques, such as density function theory and molecular dynamic simulation, which require powerful computational resources and high time consumption. The booming deep learning methods in recent years offer innovative insights and tools to address these challenges. This review comprehensively outlines the current progress of deep learning within the realm of 2D materials. Firstly, we will briefly introduce the basic concepts of deep learning and commonly used architectures, including convolutional neural and generative adversarial networks, as well as U-net models. Then, the characterization of 2D materials by deep learning methods will be discussed, including defects and materials identification, as well as automatic thickness characterization. Thirdly, the research progress for predicting the unique properties of 2D materials, involving electronic, mechanical, and thermodynamic features, will be evaluated succinctly. Lately, the current works on the inverse design of functional 2D materials will be presented. At last, we will look forward to the application prospects and opportunities of deep learning in other aspects of 2D materials. This review may offer some guidance to boost the understanding and employing novel 2D materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr.Liujun发布了新的文献求助10
刚刚
腼腆的傲薇完成签到 ,获得积分10
刚刚
友好醉波完成签到,获得积分10
1秒前
amin发布了新的文献求助10
2秒前
2秒前
xm完成签到,获得积分10
2秒前
2秒前
3秒前
淳于无施完成签到,获得积分10
3秒前
大蒜味酸奶钊完成签到 ,获得积分10
3秒前
sanfi完成签到,获得积分10
3秒前
感动的安阳完成签到,获得积分20
4秒前
llllan完成签到,获得积分10
4秒前
科研通AI2S应助lin采纳,获得10
4秒前
4秒前
苹果书兰完成签到 ,获得积分10
5秒前
hengyuan完成签到,获得积分10
5秒前
5秒前
Deemo完成签到,获得积分10
5秒前
5秒前
Noel应助山山而川采纳,获得50
7秒前
7秒前
木子完成签到,获得积分10
8秒前
研友_Ze02Vn发布了新的文献求助10
8秒前
9秒前
haha发布了新的文献求助10
9秒前
小艾发布了新的文献求助30
9秒前
9秒前
1364135702发布了新的文献求助10
10秒前
10秒前
10秒前
amin完成签到,获得积分10
10秒前
LiuRuizhe完成签到,获得积分10
11秒前
没所谓完成签到,获得积分20
12秒前
444发布了新的文献求助10
12秒前
13秒前
斯文的羽毛关注了科研通微信公众号
13秒前
深情安青应助小AB采纳,获得10
13秒前
15秒前
CodeCraft应助yiyayy采纳,获得10
15秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221437
求助须知:如何正确求助?哪些是违规求助? 2870201
关于积分的说明 8169392
捐赠科研通 2537010
什么是DOI,文献DOI怎么找? 1369237
科研通“疑难数据库(出版商)”最低求助积分说明 645397
邀请新用户注册赠送积分活动 619051