Deep learning in two-dimensional materials: Characterization, prediction, and design

深度学习 计算机科学 表征(材料科学) 人工智能 鉴定(生物学) 功能(生物学) 生成语法 数据科学 机器学习 纳米技术 材料科学 植物 进化生物学 生物
作者
Xinqin Meng,Chengbing Qin,Xilong Liang,Guofeng Zhang,Ruiyun Chen,Jianyong Hu,Zhichun Yang,Jianzhong Huo,Liantuan Xiao,Suotang Jia
出处
期刊:Frontiers of Physics in China [Springer Nature]
卷期号:19 (5) 被引量:1
标识
DOI:10.1007/s11467-024-1394-7
摘要

Abstract Since the isolation of graphene, two-dimensional (2D) materials have attracted increasing interest because of their excellent chemical and physical properties, as well as promising applications. Nonetheless, particular challenges persist in their further development, particularly in the effective identification of diverse 2D materials, the domains of large-scale and high-precision characterization, also intelligent function prediction and design. These issues are mainly solved by computational techniques, such as density function theory and molecular dynamic simulation, which require powerful computational resources and high time consumption. The booming deep learning methods in recent years offer innovative insights and tools to address these challenges. This review comprehensively outlines the current progress of deep learning within the realm of 2D materials. Firstly, we will briefly introduce the basic concepts of deep learning and commonly used architectures, including convolutional neural and generative adversarial networks, as well as U-net models. Then, the characterization of 2D materials by deep learning methods will be discussed, including defects and materials identification, as well as automatic thickness characterization. Thirdly, the research progress for predicting the unique properties of 2D materials, involving electronic, mechanical, and thermodynamic features, will be evaluated succinctly. Lately, the current works on the inverse design of functional 2D materials will be presented. At last, we will look forward to the application prospects and opportunities of deep learning in other aspects of 2D materials. This review may offer some guidance to boost the understanding and employing novel 2D materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
falling_learning完成签到 ,获得积分10
1秒前
3秒前
郑成灿完成签到 ,获得积分10
3秒前
4秒前
BaekHyun完成签到 ,获得积分10
5秒前
6秒前
拼搏一曲完成签到,获得积分10
9秒前
wyblobin完成签到,获得积分10
11秒前
小周完成签到 ,获得积分10
11秒前
星光完成签到,获得积分10
11秒前
清脆平安发布了新的文献求助10
12秒前
圆圆完成签到 ,获得积分10
12秒前
小羊完成签到 ,获得积分10
12秒前
wanci应助孙玉航采纳,获得10
13秒前
数乱了梨花完成签到 ,获得积分0
14秒前
15秒前
欣欣完成签到 ,获得积分10
16秒前
16秒前
18秒前
pengyang完成签到 ,获得积分10
19秒前
20秒前
21秒前
22秒前
GaPb氘壬完成签到,获得积分10
22秒前
23秒前
嘻嘻哈哈发布了新的文献求助70
27秒前
hsy完成签到 ,获得积分10
30秒前
清脆平安发布了新的文献求助10
30秒前
小猫完成签到 ,获得积分10
31秒前
彬彬嘉完成签到,获得积分10
32秒前
33秒前
34秒前
正直的松鼠完成签到 ,获得积分10
35秒前
KongHN完成签到,获得积分10
37秒前
孙玉航发布了新的文献求助10
37秒前
sjj发布了新的文献求助10
39秒前
huge发布了新的文献求助10
39秒前
丹D完成签到,获得积分10
39秒前
游艺完成签到 ,获得积分10
40秒前
晓风完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294026
求助须知:如何正确求助?哪些是违规求助? 4444005
关于积分的说明 13831938
捐赠科研通 4327985
什么是DOI,文献DOI怎么找? 2375883
邀请新用户注册赠送积分活动 1371153
关于科研通互助平台的介绍 1336208