Deep learning in two-dimensional materials: Characterization, prediction, and design

深度学习 计算机科学 表征(材料科学) 人工智能 鉴定(生物学) 功能(生物学) 生成语法 数据科学 机器学习 纳米技术 材料科学 植物 进化生物学 生物
作者
Xinqin Meng,Chengbing Qin,Xilong Liang,Guofeng Zhang,Ruiyun Chen,Jianyong Hu,Zhichun Yang,Jianzhong Huo,Liantuan Xiao,Suotang Jia
出处
期刊:Frontiers of Physics in China [Higher Education Press]
卷期号:19 (5) 被引量:1
标识
DOI:10.1007/s11467-024-1394-7
摘要

Abstract Since the isolation of graphene, two-dimensional (2D) materials have attracted increasing interest because of their excellent chemical and physical properties, as well as promising applications. Nonetheless, particular challenges persist in their further development, particularly in the effective identification of diverse 2D materials, the domains of large-scale and high-precision characterization, also intelligent function prediction and design. These issues are mainly solved by computational techniques, such as density function theory and molecular dynamic simulation, which require powerful computational resources and high time consumption. The booming deep learning methods in recent years offer innovative insights and tools to address these challenges. This review comprehensively outlines the current progress of deep learning within the realm of 2D materials. Firstly, we will briefly introduce the basic concepts of deep learning and commonly used architectures, including convolutional neural and generative adversarial networks, as well as U-net models. Then, the characterization of 2D materials by deep learning methods will be discussed, including defects and materials identification, as well as automatic thickness characterization. Thirdly, the research progress for predicting the unique properties of 2D materials, involving electronic, mechanical, and thermodynamic features, will be evaluated succinctly. Lately, the current works on the inverse design of functional 2D materials will be presented. At last, we will look forward to the application prospects and opportunities of deep learning in other aspects of 2D materials. This review may offer some guidance to boost the understanding and employing novel 2D materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴滴发布了新的文献求助10
刚刚
922发布了新的文献求助10
1秒前
Tangviva1988完成签到,获得积分10
1秒前
吴天春完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
研友_VZG7GZ应助Litchi采纳,获得10
4秒前
王昭完成签到 ,获得积分10
4秒前
好的昂完成签到,获得积分10
5秒前
深情安青应助王肄博采纳,获得10
6秒前
斯奈克完成签到,获得积分10
6秒前
尘染完成签到 ,获得积分10
6秒前
Z123完成签到,获得积分10
6秒前
传统的孤丝完成签到 ,获得积分10
7秒前
aaa完成签到,获得积分10
7秒前
韭菜发布了新的文献求助10
8秒前
lili完成签到 ,获得积分10
8秒前
在水一方应助Aj采纳,获得10
8秒前
Fengzhen007完成签到,获得积分10
8秒前
CATDOM完成签到 ,获得积分10
9秒前
byby完成签到,获得积分10
9秒前
Binbin完成签到 ,获得积分10
9秒前
许大脚完成签到 ,获得积分10
13秒前
超级的千青完成签到 ,获得积分10
13秒前
limz完成签到,获得积分10
14秒前
领导范儿应助韭菜采纳,获得10
14秒前
胖子完成签到,获得积分10
14秒前
羊白玉完成签到 ,获得积分10
14秒前
吃饱再睡完成签到 ,获得积分10
16秒前
白马非马完成签到 ,获得积分10
18秒前
FashionBoy应助乔治采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
堀江真夏完成签到 ,获得积分10
22秒前
Liziqi823完成签到,获得积分10
23秒前
Owen完成签到,获得积分10
24秒前
时尚雨兰完成签到,获得积分10
26秒前
不会搞科研完成签到,获得积分0
26秒前
李思超完成签到 ,获得积分10
26秒前
HHHu完成签到,获得积分10
27秒前
轴承完成签到 ,获得积分10
28秒前
热情的采枫完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952372
求助须知:如何正确求助?哪些是违规求助? 4215173
关于积分的说明 13111456
捐赠科研通 3997149
什么是DOI,文献DOI怎么找? 2187760
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740