Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning

火炬 医学 恶性肿瘤 腹水 细胞学 胸腔积液 接收机工作特性 放射科 病理 内科学 材料科学 焊接 冶金
作者
Fei Tian,Dong Liu,Na Wei,Qianqian Fu,Lin Sun,Wei Liu,Xiaolong Sui,Kathryn Tian,Genevieve Nemeth,Jingyu Feng,Jingjing Xu,Lin Xiao,Junya Han,Jingjie Fu,Yinhua Shi,Yichen Yang,Jia Liu,Chunhong Hu,Bin Feng,Yan Sun
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:30 (5): 1309-1319 被引量:23
标识
DOI:10.1038/s41591-024-02915-w
摘要

Abstract Cancer of unknown primary (CUP) site poses diagnostic challenges due to its elusive nature. Many cases of CUP manifest as pleural and peritoneal serous effusions. Leveraging cytological images from 57,220 cases at four tertiary hospitals, we developed a deep-learning method for tumor origin differentiation using cytological histology (TORCH) that can identify malignancy and predict tumor origin in both hydrothorax and ascites. We examined its performance on three internal ( n = 12,799) and two external ( n = 14,538) testing sets. In both internal and external testing sets, TORCH achieved area under the receiver operating curve values ranging from 0.953 to 0.991 for cancer diagnosis and 0.953 to 0.979 for tumor origin localization. TORCH accurately predicted primary tumor origins, with a top-1 accuracy of 82.6% and top-3 accuracy of 98.9%. Compared with results derived from pathologists, TORCH showed better prediction efficacy (1.677 versus 1.265, P < 0.001), enhancing junior pathologists’ diagnostic scores significantly (1.326 versus 1.101, P < 0.001). Patients with CUP whose initial treatment protocol was concordant with TORCH-predicted origins had better overall survival than those who were administrated discordant treatment (27 versus 17 months, P = 0.006). Our study underscores the potential of TORCH as a valuable ancillary tool in clinical practice, although further validation in randomized trials is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
文艺的竺发布了新的文献求助10
2秒前
QZZ完成签到,获得积分10
4秒前
stephen_wang完成签到,获得积分10
7秒前
852应助自由的中蓝采纳,获得10
7秒前
一路硕博发布了新的文献求助10
7秒前
roy_chiang完成签到,获得积分0
7秒前
qqshown完成签到,获得积分10
8秒前
上官若男应助温柔沛槐采纳,获得10
10秒前
10秒前
14秒前
zgt01发布了新的文献求助10
14秒前
nc5lou完成签到 ,获得积分10
16秒前
机灵一兰发布了新的文献求助10
17秒前
家若完成签到 ,获得积分10
18秒前
田超完成签到,获得积分10
18秒前
典雅问寒应助伶俐的冥幽采纳,获得10
18秒前
19秒前
df发布了新的文献求助10
20秒前
隐形曼青应助王院士采纳,获得10
23秒前
24秒前
bird完成签到,获得积分10
27秒前
27秒前
28秒前
缥缈南露发布了新的文献求助10
30秒前
33秒前
35秒前
40秒前
逆蝶发布了新的文献求助10
40秒前
40秒前
子慕i完成签到,获得积分10
42秒前
43秒前
深桥完成签到 ,获得积分20
43秒前
yx发布了新的文献求助10
44秒前
文艺的竺完成签到,获得积分10
45秒前
ding应助缥缈南露采纳,获得10
48秒前
Cy发布了新的文献求助10
48秒前
zwy应助深桥采纳,获得10
54秒前
竹筏过海应助yx采纳,获得30
56秒前
竹筏过海应助yx采纳,获得30
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775662
求助须知:如何正确求助?哪些是违规求助? 3321243
关于积分的说明 10204340
捐赠科研通 3036109
什么是DOI,文献DOI怎么找? 1666001
邀请新用户注册赠送积分活动 797244
科研通“疑难数据库(出版商)”最低求助积分说明 757766