A Bayesian Deep Learning-based Wind Power Prediction Model Considering the Whole Process of Blade Icing and De-icing

结冰 刀(考古) 过程(计算) 风力发电 人工智能 贝叶斯概率 计算机科学 机器学习 工程类 海洋工程 环境科学 气象学 机械工程 电气工程 地理 操作系统
作者
Xiaoming Liu,Jun Liu,Jiacheng Liu,Yu Zhao,Zhuwei Yang,Tao Ding
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (7): 9141-9151 被引量:2
标识
DOI:10.1109/tii.2024.3379668
摘要

Since wind resources increase with altitude, many wind turbines are installed in high-altitude areas, where blade icing may occur frequently in cold weather. Ice accretion on wind turbines can lead to severe aerodynamic performance degradation or even shutdown. Furthermore, considering the spatiotemporal uncertainty of wind resources, wind power prediction (WPP) in cold weather will be extremely complex. However, existing methods mostly focus on icing-related shutdown detection of wind turbines and pay little attention to the associated WPP during cold weather. To address this problem, a novel Bayesian deep learning-based WPP (BDL-WPP) model is proposed. First, hybrid features related to WPP are extracted based on the actual operational characteristics of wind turbines, and the whole process of blade icing and de-icing is considered for the first time. Then, a BDL-WPP model is proposed based on the extracted features. In order to process the time series information within the BDL framework, a variational Bayesian gated recurrent unit is developed to implement the proposed BDL-WPP model. Finally, a posterior inference algorithm is derived for the BDL-WPP model based on stochastic variational inference. The proposed method is tested on a real-world provincial grid, and the results show that its mean absolute error is consistently below 0.025 under both normal and icing conditions, verifying its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
北岭雪兮发布了新的文献求助10
1秒前
1秒前
Jaylene发布了新的文献求助10
2秒前
2秒前
Connie发布了新的文献求助10
2秒前
悦铭完成签到,获得积分10
2秒前
3秒前
细腻铃铛完成签到,获得积分10
3秒前
3秒前
GS11发布了新的文献求助10
4秒前
最初的梦想完成签到,获得积分10
4秒前
搜集达人应助hh采纳,获得10
6秒前
了了完成签到,获得积分10
6秒前
6秒前
i7发布了新的文献求助10
8秒前
8秒前
Rondab应助潇洒如凡采纳,获得10
8秒前
9秒前
10秒前
棉花完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
13秒前
北岭雪兮发布了新的文献求助10
13秒前
桐桐应助Jaylene采纳,获得30
13秒前
快乐的安珊完成签到,获得积分10
14秒前
xl完成签到 ,获得积分10
14秒前
shuangma发布了新的文献求助10
14秒前
zyy发布了新的文献求助10
15秒前
Maisie发布了新的文献求助10
16秒前
天书完成签到 ,获得积分10
16秒前
16秒前
圆滑的铁勺完成签到,获得积分10
17秒前
Archy发布了新的文献求助10
17秒前
18秒前
jal发布了新的文献求助20
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992659
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262911
捐赠科研通 3273209
什么是DOI,文献DOI怎么找? 1805969
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545