A Bayesian Deep Learning-based Wind Power Prediction Model Considering the Whole Process of Blade Icing and De-icing

结冰 刀(考古) 过程(计算) 风力发电 人工智能 贝叶斯概率 计算机科学 机器学习 工程类 海洋工程 环境科学 气象学 机械工程 电气工程 地理 操作系统
作者
Xiaoming Liu,Jun Liu,Jiacheng Liu,Yu Zhao,Zhuwei Yang,Tao Ding
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (7): 9141-9151 被引量:2
标识
DOI:10.1109/tii.2024.3379668
摘要

Since wind resources increase with altitude, many wind turbines are installed in high-altitude areas, where blade icing may occur frequently in cold weather. Ice accretion on wind turbines can lead to severe aerodynamic performance degradation or even shutdown. Furthermore, considering the spatiotemporal uncertainty of wind resources, wind power prediction (WPP) in cold weather will be extremely complex. However, existing methods mostly focus on icing-related shutdown detection of wind turbines and pay little attention to the associated WPP during cold weather. To address this problem, a novel Bayesian deep learning-based WPP (BDL-WPP) model is proposed. First, hybrid features related to WPP are extracted based on the actual operational characteristics of wind turbines, and the whole process of blade icing and de-icing is considered for the first time. Then, a BDL-WPP model is proposed based on the extracted features. In order to process the time series information within the BDL framework, a variational Bayesian gated recurrent unit is developed to implement the proposed BDL-WPP model. Finally, a posterior inference algorithm is derived for the BDL-WPP model based on stochastic variational inference. The proposed method is tested on a real-world provincial grid, and the results show that its mean absolute error is consistently below 0.025 under both normal and icing conditions, verifying its effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助心灵美千易采纳,获得10
1秒前
研友_VZG7GZ应助珍妮采纳,获得10
1秒前
1秒前
Joey发布了新的文献求助10
1秒前
1秒前
sss发布了新的文献求助10
1秒前
哈哈发布了新的文献求助10
2秒前
FENGHUI完成签到,获得积分20
2秒前
2秒前
洁净平卉完成签到,获得积分10
2秒前
2秒前
2秒前
彭于晏应助卢文强采纳,获得10
3秒前
bob发布了新的文献求助30
3秒前
NK001发布了新的文献求助10
3秒前
无花果应助LIUJIALIANG采纳,获得10
3秒前
Akim应助再学一分钟采纳,获得10
3秒前
3秒前
YWXO发布了新的文献求助10
3秒前
归途发布了新的文献求助10
3秒前
CodeCraft应助不打游戏_采纳,获得10
4秒前
orixero应助hzy采纳,获得10
5秒前
5秒前
大个应助怕黑海冬采纳,获得10
5秒前
体贴的之柔完成签到,获得积分10
6秒前
6秒前
nn完成签到,获得积分10
6秒前
科研通AI6应助Yy采纳,获得10
6秒前
nannan完成签到,获得积分20
7秒前
7秒前
7秒前
渤大小mn发布了新的文献求助10
7秒前
8秒前
8秒前
starrism发布了新的文献求助10
8秒前
隐形曼青应助谦让的含海采纳,获得10
8秒前
沐沐完成签到,获得积分10
8秒前
云溪发布了新的文献求助10
9秒前
Dimples完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853