A Bayesian Deep Learning-based Wind Power Prediction Model Considering the Whole Process of Blade Icing and De-icing

结冰 刀(考古) 过程(计算) 风力发电 人工智能 贝叶斯概率 计算机科学 机器学习 工程类 海洋工程 环境科学 气象学 机械工程 电气工程 地理 操作系统
作者
Xiaoming Liu,Jun Liu,Jiacheng Liu,Yu Zhao,Zhuwei Yang,Tao Ding
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (7): 9141-9151 被引量:2
标识
DOI:10.1109/tii.2024.3379668
摘要

Since wind resources increase with altitude, many wind turbines are installed in high-altitude areas, where blade icing may occur frequently in cold weather. Ice accretion on wind turbines can lead to severe aerodynamic performance degradation or even shutdown. Furthermore, considering the spatiotemporal uncertainty of wind resources, wind power prediction (WPP) in cold weather will be extremely complex. However, existing methods mostly focus on icing-related shutdown detection of wind turbines and pay little attention to the associated WPP during cold weather. To address this problem, a novel Bayesian deep learning-based WPP (BDL-WPP) model is proposed. First, hybrid features related to WPP are extracted based on the actual operational characteristics of wind turbines, and the whole process of blade icing and de-icing is considered for the first time. Then, a BDL-WPP model is proposed based on the extracted features. In order to process the time series information within the BDL framework, a variational Bayesian gated recurrent unit is developed to implement the proposed BDL-WPP model. Finally, a posterior inference algorithm is derived for the BDL-WPP model based on stochastic variational inference. The proposed method is tested on a real-world provincial grid, and the results show that its mean absolute error is consistently below 0.025 under both normal and icing conditions, verifying its effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
222完成签到,获得积分20
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得40
2秒前
豆豆突发布了新的文献求助10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
Stella应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
Stella应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
乐乐应助边斯曼采纳,获得10
3秒前
及尔发布了新的文献求助10
3秒前
三七四十三完成签到,获得积分10
4秒前
5秒前
王文茹发布了新的文献求助10
5秒前
5秒前
青mu发布了新的文献求助10
6秒前
aXiong完成签到,获得积分10
7秒前
深海鳕鱼完成签到,获得积分0
7秒前
222发布了新的文献求助30
7秒前
万能图书馆应助我是笨蛋采纳,获得10
9秒前
lebron完成签到,获得积分10
9秒前
aXiong发布了新的文献求助10
10秒前
10秒前
虞不见王完成签到 ,获得积分10
11秒前
Joker发布了新的文献求助10
11秒前
12秒前
握不住的沙完成签到,获得积分10
12秒前
caohuijun发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600851
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843458
捐赠科研通 4678360
什么是DOI,文献DOI怎么找? 2539004
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241