A Bayesian Deep Learning-based Wind Power Prediction Model Considering the Whole Process of Blade Icing and De-icing

结冰 刀(考古) 过程(计算) 风力发电 人工智能 贝叶斯概率 计算机科学 机器学习 工程类 海洋工程 环境科学 气象学 机械工程 电气工程 地理 操作系统
作者
Xiaoming Liu,Jun Liu,Jiacheng Liu,Yu Zhao,Zhuwei Yang,Tao Ding
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (7): 9141-9151 被引量:2
标识
DOI:10.1109/tii.2024.3379668
摘要

Since wind resources increase with altitude, many wind turbines are installed in high-altitude areas, where blade icing may occur frequently in cold weather. Ice accretion on wind turbines can lead to severe aerodynamic performance degradation or even shutdown. Furthermore, considering the spatiotemporal uncertainty of wind resources, wind power prediction (WPP) in cold weather will be extremely complex. However, existing methods mostly focus on icing-related shutdown detection of wind turbines and pay little attention to the associated WPP during cold weather. To address this problem, a novel Bayesian deep learning-based WPP (BDL-WPP) model is proposed. First, hybrid features related to WPP are extracted based on the actual operational characteristics of wind turbines, and the whole process of blade icing and de-icing is considered for the first time. Then, a BDL-WPP model is proposed based on the extracted features. In order to process the time series information within the BDL framework, a variational Bayesian gated recurrent unit is developed to implement the proposed BDL-WPP model. Finally, a posterior inference algorithm is derived for the BDL-WPP model based on stochastic variational inference. The proposed method is tested on a real-world provincial grid, and the results show that its mean absolute error is consistently below 0.025 under both normal and icing conditions, verifying its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实的半山完成签到,获得积分10
刚刚
迅速的丑发布了新的文献求助10
1秒前
1秒前
29完成签到,获得积分10
2秒前
2秒前
小琪猪发布了新的文献求助10
3秒前
木卫二完成签到 ,获得积分10
3秒前
乐观的店员完成签到,获得积分20
4秒前
4秒前
shkknx完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
ccccccp完成签到,获得积分10
5秒前
凯撒的归凯撒完成签到 ,获得积分10
6秒前
lhl完成签到,获得积分10
6秒前
迅速的丑完成签到,获得积分10
6秒前
白蕲完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
axuan发布了新的文献求助10
9秒前
鹬鸱发布了新的文献求助10
10秒前
Anton发布了新的文献求助20
11秒前
你才是小哭包完成签到 ,获得积分10
12秒前
lindengxiao完成签到,获得积分20
12秒前
李金奥完成签到 ,获得积分10
13秒前
leezz发布了新的文献求助30
13秒前
Akim应助佛了欢喜采纳,获得10
14秒前
14秒前
14秒前
14秒前
科研小达子完成签到,获得积分10
14秒前
白洛玄发布了新的文献求助10
15秒前
CAOHOU应助樱花漫舞采纳,获得10
15秒前
YZG完成签到 ,获得积分10
15秒前
Akim应助欢呼的汉堡采纳,获得10
16秒前
痴情的冰海完成签到,获得积分10
17秒前
木子完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558330
求助须知:如何正确求助?哪些是违规求助? 3985350
关于积分的说明 12338439
捐赠科研通 3655702
什么是DOI,文献DOI怎么找? 2013951
邀请新用户注册赠送积分活动 1048833
科研通“疑难数据库(出版商)”最低求助积分说明 937181