PGCN: Pyramidal Graph Convolutional Network for EEG Emotion Recognition

计算机科学 脑电图 模式识别(心理学) 卷积神经网络 人工智能 图形 语音识别 理论计算机科学 心理学 神经科学
作者
Ming Jin,Changde Du,Huiguang He,Ting Cai,Jinpeng Li
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 9070-9082 被引量:12
标识
DOI:10.1109/tmm.2024.3385676
摘要

Emotion recognition is essential in the diagnosis and rehabilitation of various mental diseases. In the last decade, electroencephalogram (EEG)-based emotion recognition has been intensively investigated due to its prominative accuracy and reliability, and graph convolutional network (GCN) has become a mainstream model to decode emotions from EEG signals. However, the electrode relationship, especially long-range electrode dependencies across the scalp, may be underutilized by GCNs, although such relationships have been proven to be important in emotion recognition. The small receptive field makes shallow GCNs only aggregate local nodes. On the other hand, stacking too many layers leads to over-smoothing. To solve these problems, we propose the pyramidal graph convolutional network (PGCN), which aggregates features at three levels: local, mesoscopic, and global. First, we construct a vanilla GCN based on the 3D topological relationships of electrodes, which is used to integrate two-order local features; Second, we construct several mesoscopic brain regions based on priori knowledge and employ mesoscopic attention to sequentially calculate the virtual mesoscopic centers to focus on the functional connections of mesoscopic brain regions; Finally, we fuse the node features and their 3D positions to construct a numerical relationship adjacency matrix to integrate structural and functional connections from the global perspective. Experimental results on four public datasets indicate that PGCN enhances the relationship modelling across the scalp and achieves stateof-the-art performance in both subject-dependent and subjectindependent scenarios. Meanwhile, PGCN makes an effective trade-off between enhancing network depth and receptive fields while suppressing the ensuing over-smoothing. Our codes are publicly accessible at https://github.com/Jinminbox/PGCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加减乘除完成签到,获得积分10
刚刚
甜甜玫瑰应助翔翔超人采纳,获得10
3秒前
Agnesma完成签到,获得积分10
4秒前
ytong完成签到,获得积分10
4秒前
skyinner完成签到 ,获得积分10
5秒前
姜峰完成签到,获得积分10
6秒前
123应助耍酷的梦桃采纳,获得200
7秒前
xiaofeng5838完成签到,获得积分10
7秒前
xyzdmmm完成签到,获得积分10
10秒前
我爱科研完成签到 ,获得积分10
11秒前
Leo完成签到 ,获得积分10
12秒前
Bioflying完成签到,获得积分10
13秒前
SONGYEZI应助无情向薇采纳,获得30
15秒前
知性的水杯完成签到 ,获得积分10
15秒前
蓝桉完成签到 ,获得积分10
15秒前
huy完成签到,获得积分10
15秒前
耍酷的梦桃完成签到,获得积分10
16秒前
落后访风完成签到,获得积分10
17秒前
明天过后完成签到,获得积分10
17秒前
kevinjiang完成签到,获得积分10
17秒前
白茶的雪完成签到,获得积分10
18秒前
研友_Lpawrn完成签到,获得积分10
19秒前
Leo关注了科研通微信公众号
19秒前
小脸红扑扑完成签到 ,获得积分10
21秒前
LJJ完成签到 ,获得积分10
21秒前
芊芊完成签到 ,获得积分10
22秒前
邓博完成签到,获得积分10
22秒前
keyanzhang完成签到 ,获得积分10
23秒前
sxy完成签到,获得积分10
24秒前
帅哥吴克完成签到,获得积分10
25秒前
喈喈青鸟完成签到,获得积分10
25秒前
呱呱呱完成签到,获得积分10
25秒前
Huang完成签到,获得积分10
26秒前
阿巴完成签到 ,获得积分10
26秒前
aa完成签到,获得积分10
27秒前
泥鳅面完成签到,获得积分10
27秒前
慕容雅柏完成签到 ,获得积分10
28秒前
xueerbx完成签到,获得积分10
32秒前
茹茹完成签到 ,获得积分10
33秒前
css完成签到,获得积分10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294718
求助须知:如何正确求助?哪些是违规求助? 2930587
关于积分的说明 8446440
捐赠科研通 2602902
什么是DOI,文献DOI怎么找? 1420777
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643475