亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PGCN: Pyramidal Graph Convolutional Network for EEG Emotion Recognition

计算机科学 脑电图 模式识别(心理学) 卷积神经网络 人工智能 图形 语音识别 理论计算机科学 心理学 神经科学
作者
Ming Jin,Changde Du,Huiguang He,Ting Cai,Jinpeng Li
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 9070-9082 被引量:15
标识
DOI:10.1109/tmm.2024.3385676
摘要

Emotion recognition is essential in the diagnosis and rehabilitation of various mental diseases. In the last decade, electroencephalogram (EEG)-based emotion recognition has been intensively investigated due to its prominative accuracy and reliability, and graph convolutional network (GCN) has become a mainstream model to decode emotions from EEG signals. However, the electrode relationship, especially long-range electrode dependencies across the scalp, may be underutilized by GCNs, although such relationships have been proven to be important in emotion recognition. The small receptive field makes shallow GCNs only aggregate local nodes. On the other hand, stacking too many layers leads to over-smoothing. To solve these problems, we propose the pyramidal graph convolutional network (PGCN), which aggregates features at three levels: local, mesoscopic, and global. First, we construct a vanilla GCN based on the 3D topological relationships of electrodes, which is used to integrate two-order local features; Second, we construct several mesoscopic brain regions based on priori knowledge and employ mesoscopic attention to sequentially calculate the virtual mesoscopic centers to focus on the functional connections of mesoscopic brain regions; Finally, we fuse the node features and their 3D positions to construct a numerical relationship adjacency matrix to integrate structural and functional connections from the global perspective. Experimental results on four public datasets indicate that PGCN enhances the relationship modelling across the scalp and achieves stateof-the-art performance in both subject-dependent and subjectindependent scenarios. Meanwhile, PGCN makes an effective trade-off between enhancing network depth and receptive fields while suppressing the ensuing over-smoothing. Our codes are publicly accessible at https://github.com/Jinminbox/PGCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李李完成签到,获得积分20
5秒前
ymr完成签到 ,获得积分10
9秒前
9秒前
仔wang完成签到,获得积分10
10秒前
烟花应助李李采纳,获得10
10秒前
呵呵发布了新的文献求助10
14秒前
不能随便完成签到,获得积分10
31秒前
清脆的绮梅完成签到 ,获得积分20
31秒前
lorentzh完成签到,获得积分10
44秒前
呵呵完成签到 ,获得积分10
46秒前
威武灵阳完成签到,获得积分10
48秒前
谨慎的友安完成签到 ,获得积分10
53秒前
54秒前
58秒前
58秒前
1分钟前
木子木发布了新的文献求助10
1分钟前
1分钟前
星辰大海应助粗心的新之采纳,获得10
1分钟前
zy95282应助13采纳,获得30
1分钟前
999完成签到 ,获得积分10
1分钟前
环走鱼尾纹完成签到 ,获得积分10
1分钟前
Kunning完成签到 ,获得积分10
1分钟前
今后应助专注的寒香采纳,获得30
1分钟前
只要平凡发布了新的文献求助10
1分钟前
glemy完成签到,获得积分20
1分钟前
星之芋完成签到,获得积分10
1分钟前
slayers应助科研通管家采纳,获得10
1分钟前
dong应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
星希完成签到 ,获得积分10
1分钟前
可爱的函函应助李治稳采纳,获得10
1分钟前
幸运幸福完成签到,获得积分10
2分钟前
专注的寒香完成签到,获得积分20
2分钟前
2分钟前
Brosiga发布了新的文献求助10
2分钟前
2分钟前
杨无敌完成签到 ,获得积分10
2分钟前
大大的西瓜完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994995
求助须知:如何正确求助?哪些是违规求助? 3535103
关于积分的说明 11267066
捐赠科研通 3274866
什么是DOI,文献DOI怎么找? 1806498
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809764