SIRT3
炎症体
氧化应激
锡尔图因
线粒体
化学
细胞生物学
乙酰化
脂肪性肝炎
生物
生物化学
内科学
受体
医学
脂肪肝
基因
疾病
作者
Junli Zhang,Yajuan Zhao,Shuhan Wang,Guixin Li,Keshu Xu
标识
DOI:10.1016/j.freeradbiomed.2022.07.018
摘要
Lipotoxicity and unresolved oxidative stress are key drivers of metabolic inflammation in nonalcoholic steatohepatitis (NASH). cAMP-response element binding protein H(CREBH) is a liver-specific transcription factor and regulates the glucose and lipid metabolism of NASH. However, its role in mitochondrial oxidative stress and its association with sirtuin 3 (SIRT3), a master regulator of deacetylation for mitochondrial proteins, remains elusive. In this study, AML-12 cells were treated with palmitic acid to imitate the pathological changes of NASH in vitro and 8-week-old male C57BL/6J mice were fed with a high-fat (HF) diet or a methionine-choline-deficient (MCD) diet to build the widely accepted in vivo model of NASH. We found that lipid overload induced mitochondrial oxidative stress and stimulated the expression of CREBH and SIRT3. CREBH overexpression alleviated the mitochondrial oxidative stress. Moreover, CREBH promoted SIRT3 expression, which regulated the deacetylation of manganese superoxide dismutase (MnSOD) and inhibited NOD-Like Receptor Pyrin Domain Containing 3 (Nlrp3) inflammasome activation whereas suppression of SIRT3 damaged the protecting ability of CREBH in mitochondrial oxidative stress. CREBH knockout mice were highly susceptible to HF and MCD diet-induced NASH with more severe oxidative stress. Collectively, our results firstly provided the support that CREBH could serve as a protective factor in the progression of NASH by regulating the acetylation of MnSOD and the activation of Nlrp3 inflammasome through SIRT3. These results suggest that CREBH might be a valuable therapeutic candidate for NASH.
科研通智能强力驱动
Strongly Powered by AbleSci AI