Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels

人工智能 直方图 光伏系统 计算机科学 模式识别(心理学) 量化(信号处理) 图像(数学) 集合(抽象数据类型) 深度学习 计算机视觉 算法 工程类 电气工程 程序设计语言
作者
S. Prabhakaran,R. Annie Uthra,J. Preetharoselyn
出处
期刊:Computer systems science and engineering [Computers, Materials and Continua (Tech Science Press)]
卷期号:44 (3): 2683-2700 被引量:13
标识
DOI:10.32604/csse.2023.028898
摘要

The Problem of Photovoltaic (PV) defects detection and classification has been well studied. Several techniques exist in identifying the defects and localizing them in PV panels that use various features, but suffer to achieve higher performance. An efficient Real-Time Multi Variant Deep learning Model (RMVDM) is presented in this article to handle this issue. The method considers different defects like a spotlight, crack, dust, and micro-cracks to detect the defects as well as localizes the defects. The image data set given has been preprocessed by applying the Region-Based Histogram Approximation (RHA) algorithm. The preprocessed images are applied with Gray Scale Quantization Algorithm (GSQA) to extract the features. Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons. Each class neuron has been designed to measure Defect Class Support (DCS). At the test phase, the input image has been applied with different operations, and the features extracted passed through the model trained. The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image. Further, the method uses the Higher-Order Texture Localization (HOTL) technique in localizing the defect. The proposed model produces efficient results with around 97% in defect detection and localization with higher accuracy and less time complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾天理发布了新的文献求助10
1秒前
啊啊啊啊发布了新的文献求助10
1秒前
17381362015发布了新的文献求助10
1秒前
银银发布了新的文献求助10
1秒前
2秒前
科研鸟发布了新的文献求助10
2秒前
离毕业又进一步完成签到,获得积分10
2秒前
十六发布了新的文献求助10
3秒前
grammays发布了新的文献求助10
5秒前
katarinabluu完成签到,获得积分10
5秒前
zorn完成签到,获得积分10
6秒前
好货分享完成签到,获得积分10
7秒前
顾天理完成签到,获得积分10
7秒前
干净吐司完成签到,获得积分20
8秒前
zorn发布了新的文献求助10
8秒前
学生白完成签到,获得积分10
10秒前
LaTeXer应助稳重的水蓉采纳,获得50
10秒前
smottom应助潇洒映冬采纳,获得20
10秒前
外向的慕灵完成签到,获得积分10
12秒前
grammays完成签到,获得积分10
12秒前
隐形曼青应助树123采纳,获得10
12秒前
13秒前
万能图书馆应助十六采纳,获得10
14秒前
wanci应助科研通管家采纳,获得20
14秒前
欧阳振应助科研通管家采纳,获得10
14秒前
mx应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
邓佳鑫Alan应助科研通管家采纳,获得10
14秒前
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
mx应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
雨雨子发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966589
求助须知:如何正确求助?哪些是违规求助? 3512031
关于积分的说明 11161353
捐赠科研通 3246821
什么是DOI,文献DOI怎么找? 1793510
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420