Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels

人工智能 直方图 光伏系统 计算机科学 模式识别(心理学) 量化(信号处理) 图像(数学) 集合(抽象数据类型) 深度学习 计算机视觉 算法 工程类 电气工程 程序设计语言
作者
S. Prabhakaran,R. Annie Uthra,J. Preetharoselyn
出处
期刊:Computer systems science and engineering [Computers, Materials and Continua (Tech Science Press)]
卷期号:44 (3): 2683-2700 被引量:13
标识
DOI:10.32604/csse.2023.028898
摘要

The Problem of Photovoltaic (PV) defects detection and classification has been well studied. Several techniques exist in identifying the defects and localizing them in PV panels that use various features, but suffer to achieve higher performance. An efficient Real-Time Multi Variant Deep learning Model (RMVDM) is presented in this article to handle this issue. The method considers different defects like a spotlight, crack, dust, and micro-cracks to detect the defects as well as localizes the defects. The image data set given has been preprocessed by applying the Region-Based Histogram Approximation (RHA) algorithm. The preprocessed images are applied with Gray Scale Quantization Algorithm (GSQA) to extract the features. Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons. Each class neuron has been designed to measure Defect Class Support (DCS). At the test phase, the input image has been applied with different operations, and the features extracted passed through the model trained. The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image. Further, the method uses the Higher-Order Texture Localization (HOTL) technique in localizing the defect. The proposed model produces efficient results with around 97% in defect detection and localization with higher accuracy and less time complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助张zhang采纳,获得10
刚刚
唐水之发布了新的文献求助10
1秒前
Zac完成签到,获得积分10
1秒前
李书荣完成签到 ,获得积分10
2秒前
完美世界应助whr采纳,获得30
2秒前
慕青应助伴风望海采纳,获得10
3秒前
远山发布了新的文献求助10
4秒前
NexusExplorer应助kakashi0084采纳,获得10
5秒前
5秒前
在水一方应助玖玖柒idol采纳,获得10
5秒前
Blade发布了新的文献求助10
5秒前
忧郁水彤发布了新的文献求助30
6秒前
6秒前
orixero应助黄大师采纳,获得10
6秒前
7秒前
开放素完成签到 ,获得积分10
8秒前
yatou5651发布了新的文献求助30
8秒前
xiaozheng完成签到,获得积分10
11秒前
12秒前
kersen完成签到,获得积分20
13秒前
14秒前
Rita发布了新的文献求助10
14秒前
14秒前
Blade完成签到,获得积分10
15秒前
CipherSage应助远山采纳,获得10
15秒前
15秒前
mit完成签到 ,获得积分0
15秒前
16秒前
kersen发布了新的文献求助10
18秒前
111发布了新的文献求助10
18秒前
一杯茶发布了新的文献求助10
18秒前
大个应助sniper111采纳,获得10
18秒前
风中绝悟应助troubadourelf采纳,获得10
19秒前
饱满的凝蕊完成签到,获得积分10
19秒前
黄大师发布了新的文献求助10
19秒前
19秒前
19秒前
Nana发布了新的文献求助10
20秒前
mashibeo完成签到,获得积分10
21秒前
phy完成签到,获得积分10
21秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170097
求助须知:如何正确求助?哪些是违规求助? 2821387
关于积分的说明 7933584
捐赠科研通 2481570
什么是DOI,文献DOI怎么找? 1321908
科研通“疑难数据库(出版商)”最低求助积分说明 633434
版权声明 602579