人工智能
直方图
光伏系统
计算机科学
模式识别(心理学)
量化(信号处理)
图像(数学)
集合(抽象数据类型)
深度学习
计算机视觉
算法
工程类
电气工程
程序设计语言
作者
S. Prabhakaran,R. Annie Uthra,J. Preetharoselyn
出处
期刊:Computer systems science and engineering
[Computers, Materials and Continua (Tech Science Press)]
日期:2023-01-01
卷期号:44 (3): 2683-2700
被引量:13
标识
DOI:10.32604/csse.2023.028898
摘要
The Problem of Photovoltaic (PV) defects detection and classification has been well studied. Several techniques exist in identifying the defects and localizing them in PV panels that use various features, but suffer to achieve higher performance. An efficient Real-Time Multi Variant Deep learning Model (RMVDM) is presented in this article to handle this issue. The method considers different defects like a spotlight, crack, dust, and micro-cracks to detect the defects as well as localizes the defects. The image data set given has been preprocessed by applying the Region-Based Histogram Approximation (RHA) algorithm. The preprocessed images are applied with Gray Scale Quantization Algorithm (GSQA) to extract the features. Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons. Each class neuron has been designed to measure Defect Class Support (DCS). At the test phase, the input image has been applied with different operations, and the features extracted passed through the model trained. The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image. Further, the method uses the Higher-Order Texture Localization (HOTL) technique in localizing the defect. The proposed model produces efficient results with around 97% in defect detection and localization with higher accuracy and less time complexity.
科研通智能强力驱动
Strongly Powered by AbleSci AI