Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels

人工智能 直方图 光伏系统 计算机科学 模式识别(心理学) 量化(信号处理) 图像(数学) 集合(抽象数据类型) 深度学习 计算机视觉 算法 工程类 电气工程 程序设计语言
作者
S. Prabhakaran,R. Annie Uthra,J. Preetharoselyn
出处
期刊:Computer systems science and engineering [Computers, Materials and Continua (Tech Science Press)]
卷期号:44 (3): 2683-2700 被引量:13
标识
DOI:10.32604/csse.2023.028898
摘要

The Problem of Photovoltaic (PV) defects detection and classification has been well studied. Several techniques exist in identifying the defects and localizing them in PV panels that use various features, but suffer to achieve higher performance. An efficient Real-Time Multi Variant Deep learning Model (RMVDM) is presented in this article to handle this issue. The method considers different defects like a spotlight, crack, dust, and micro-cracks to detect the defects as well as localizes the defects. The image data set given has been preprocessed by applying the Region-Based Histogram Approximation (RHA) algorithm. The preprocessed images are applied with Gray Scale Quantization Algorithm (GSQA) to extract the features. Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons. Each class neuron has been designed to measure Defect Class Support (DCS). At the test phase, the input image has been applied with different operations, and the features extracted passed through the model trained. The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image. Further, the method uses the Higher-Order Texture Localization (HOTL) technique in localizing the defect. The proposed model produces efficient results with around 97% in defect detection and localization with higher accuracy and less time complexity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zenmefeishi完成签到,获得积分10
刚刚
迷路的天亦完成签到,获得积分10
1秒前
花花发布了新的文献求助10
3秒前
不知道完成签到,获得积分10
3秒前
silencer完成签到 ,获得积分10
4秒前
宁日富一日完成签到,获得积分10
5秒前
微笑鹤发布了新的文献求助10
5秒前
hyekyo完成签到,获得积分10
6秒前
Michael_li完成签到,获得积分10
6秒前
6秒前
CaO完成签到,获得积分20
7秒前
i_jueloa完成签到 ,获得积分10
8秒前
cc完成签到 ,获得积分10
8秒前
殷馨完成签到,获得积分10
9秒前
9秒前
zz完成签到,获得积分10
10秒前
可靠的纸鹤完成签到,获得积分10
11秒前
11秒前
12秒前
liu完成签到,获得积分10
12秒前
缓慢的冬云完成签到,获得积分0
13秒前
其实是北北吖完成签到,获得积分10
13秒前
13秒前
qiangxu完成签到,获得积分10
13秒前
火星上的万天完成签到,获得积分10
13秒前
tleeny完成签到,获得积分20
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
destiny完成签到,获得积分10
15秒前
phd_cheng发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
dd发布了新的文献求助10
17秒前
17秒前
清脆的半青完成签到,获得积分10
17秒前
tuanheqi应助科研通管家采纳,获得150
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
tuanheqi应助科研通管家采纳,获得150
18秒前
ding应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773753
求助须知:如何正确求助?哪些是违规求助? 5613119
关于积分的说明 15432265
捐赠科研通 4906147
什么是DOI,文献DOI怎么找? 2640063
邀请新用户注册赠送积分活动 1587940
关于科研通互助平台的介绍 1542980