Information fusion-based genetic algorithm with long short-term memory for stock price and trend prediction

计算机科学 期限(时间) 信息融合 股票价格 融合 短时记忆 算法 遗传算法 人工智能 数据挖掘 机器学习 系列(地层学) 人工神经网络 生物 物理 量子力学 哲学 循环神经网络 古生物学 语言学
作者
Ankit Thakkar,Kinjal Chaudhari
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:128: 109428-109428 被引量:28
标识
DOI:10.1016/j.asoc.2022.109428
摘要

Information fusion is one of the critical aspects in diverse fields of applications; while the collected data may provide certain perspectives, a fusion of such data can be a useful way of exploring, expanding, enhancing, and extracting meaningful information for a better organization of the targeted domain. A nature-inspired evolutionary approach, namely, genetic algorithm (GA) is adopted for a variety of applications including stock market prediction. The complex, highly fluctuating financial market-related problems require optimized models for reliable forecasting. Also, it can be observed that stock market etiquettes are generally non-linear in nature and therefore, a broader understanding and analysis of such market behaviors necessitate the collection and fusion of relevant information based on different associated factors. In this article, we propose an information fusion-based GA approach with inter-intra crossover and adaptive mutation (ICAN) for stock price and trend prediction. Inspired by the genetic diversity and survival capability of various organisms, our proposed approach aims to optimize parameters of a long short-term memory prediction model, and selects a set of features; to address these problems of interest, we integrate inter-chromosome as well as conditional intra-chromosome crossover operations along with adaptive mutation to diversify the potential chromosome solutions. We illustrate the step-by-step procedure followed by GA with ICAN and evaluate its performance for one-day-ahead stock price and trend prediction. GA with ICAN-based optimization results in an average reduction of 43%, 27%, and 26% using mean squared error, mean absolute error, and mean absolute percentage error, respectively, as compared to the existing GA-based optimization approaches; further, an average improvement of 61% is encountered using R 2 score. We also compare our work with Ant Lion Optimization approach and demonstrate the significance of GA with ICAN-based optimization. We analyze statistical significance, as well as convergence functions, for GA with ICAN and discuss remarkable performance enhancement; we provide necessary concluding remarks with potential future research directions. • Two parts in each chromosome are proposed to select features and optimize parameters. • Inter-chromosome crossover is individually applied to each part of chromosomes. • Information fusion-based conditional intra-chromosome crossover is performed. • Mutation rate is adaptively updated based on previous and current generation fitness. • Improved stock price trend prediction performance is demonstrated using GA with ICAN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小童发布了新的文献求助30
刚刚
龙腾虎跃发布了新的文献求助10
刚刚
聪明海云发布了新的文献求助10
1秒前
刻苦的旺仔完成签到,获得积分10
1秒前
1秒前
xx发布了新的文献求助10
1秒前
煎蛋完成签到,获得积分10
2秒前
5秒前
今后应助周至采纳,获得10
5秒前
晓雅发布了新的文献求助10
5秒前
ptalala发布了新的文献求助10
5秒前
7秒前
哎嘿发布了新的文献求助10
7秒前
Mrsummer发布了新的文献求助10
8秒前
idannn完成签到,获得积分10
9秒前
耿耿完成签到,获得积分20
9秒前
22222发布了新的文献求助10
10秒前
结实大门发布了新的文献求助10
10秒前
石董宝宝完成签到,获得积分10
10秒前
木槿完成签到,获得积分10
11秒前
仁爱太阳完成签到,获得积分10
12秒前
12秒前
zt发布了新的文献求助10
13秒前
14秒前
曾经大地发布了新的文献求助10
14秒前
buno应助Mrsummer采纳,获得10
14秒前
14秒前
再睡十分钟完成签到,获得积分10
14秒前
15秒前
17秒前
科研通AI2S应助扎根采纳,获得150
17秒前
阿斯顿完成签到,获得积分10
17秒前
17秒前
罗罗luoluo发布了新的文献求助10
17秒前
Roger发布了新的文献求助10
18秒前
ptalala发布了新的文献求助20
18秒前
18秒前
18秒前
地瓜发布了新的文献求助10
19秒前
我是老大应助柏不斜采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329