Information fusion-based genetic algorithm with long short-term memory for stock price and trend prediction

计算机科学 期限(时间) 信息融合 股票价格 融合 短时记忆 算法 遗传算法 人工智能 数据挖掘 机器学习 系列(地层学) 人工神经网络 生物 语言学 哲学 物理 量子力学 循环神经网络 古生物学
作者
Ankit Thakkar,Kinjal Chaudhari
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:128: 109428-109428 被引量:28
标识
DOI:10.1016/j.asoc.2022.109428
摘要

Information fusion is one of the critical aspects in diverse fields of applications; while the collected data may provide certain perspectives, a fusion of such data can be a useful way of exploring, expanding, enhancing, and extracting meaningful information for a better organization of the targeted domain. A nature-inspired evolutionary approach, namely, genetic algorithm (GA) is adopted for a variety of applications including stock market prediction. The complex, highly fluctuating financial market-related problems require optimized models for reliable forecasting. Also, it can be observed that stock market etiquettes are generally non-linear in nature and therefore, a broader understanding and analysis of such market behaviors necessitate the collection and fusion of relevant information based on different associated factors. In this article, we propose an information fusion-based GA approach with inter-intra crossover and adaptive mutation (ICAN) for stock price and trend prediction. Inspired by the genetic diversity and survival capability of various organisms, our proposed approach aims to optimize parameters of a long short-term memory prediction model, and selects a set of features; to address these problems of interest, we integrate inter-chromosome as well as conditional intra-chromosome crossover operations along with adaptive mutation to diversify the potential chromosome solutions. We illustrate the step-by-step procedure followed by GA with ICAN and evaluate its performance for one-day-ahead stock price and trend prediction. GA with ICAN-based optimization results in an average reduction of 43%, 27%, and 26% using mean squared error, mean absolute error, and mean absolute percentage error, respectively, as compared to the existing GA-based optimization approaches; further, an average improvement of 61% is encountered using R 2 score. We also compare our work with Ant Lion Optimization approach and demonstrate the significance of GA with ICAN-based optimization. We analyze statistical significance, as well as convergence functions, for GA with ICAN and discuss remarkable performance enhancement; we provide necessary concluding remarks with potential future research directions. • Two parts in each chromosome are proposed to select features and optimize parameters. • Inter-chromosome crossover is individually applied to each part of chromosomes. • Information fusion-based conditional intra-chromosome crossover is performed. • Mutation rate is adaptively updated based on previous and current generation fitness. • Improved stock price trend prediction performance is demonstrated using GA with ICAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
biochliu完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
米米完成签到,获得积分10
2秒前
脑洞疼应助Xcentimeter采纳,获得10
2秒前
2秒前
情怀应助简易采纳,获得10
2秒前
共享精神应助闫132采纳,获得10
4秒前
XiaoMing发布了新的文献求助100
4秒前
迨你个迨迨完成签到,获得积分20
4秒前
5秒前
宫_发布了新的文献求助10
5秒前
6秒前
6秒前
22发布了新的文献求助10
7秒前
7秒前
123_发布了新的文献求助10
7秒前
完美世界应助ICE采纳,获得10
8秒前
Cassie发布了新的文献求助10
8秒前
万能图书馆应助fan采纳,获得10
9秒前
咚咚咚完成签到,获得积分10
10秒前
危机发布了新的文献求助10
11秒前
张贵虎发布了新的文献求助10
12秒前
龚幻梦发布了新的文献求助10
12秒前
Akim应助小程同学采纳,获得10
13秒前
米米发布了新的文献求助10
13秒前
14秒前
柯一一应助郭志倩采纳,获得10
14秒前
开放魂幽完成签到 ,获得积分10
15秒前
15秒前
Yvonna应助wangliang0329采纳,获得10
16秒前
MchemG应助22采纳,获得10
16秒前
何东霖完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
Lara完成签到,获得积分10
19秒前
liu发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959614
求助须知:如何正确求助?哪些是违规求助? 3505862
关于积分的说明 11126541
捐赠科研通 3237790
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871688
科研通“疑难数据库(出版商)”最低求助积分说明 802963