Swin Transformer for COVID-19 Infection Percentage Estimation from CT-Scans

2019年冠状病毒病(COVID-19) 均方误差 计算机科学 平均绝对误差 人工智能 模式识别(心理学) 医学 计算机断层摄影术 机器学习 统计 数学 传染病(医学专业) 病理 疾病 放射科
作者
Suman Chaudhary,Wanting Yang,Yan Qiang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 520-528 被引量:1
标识
DOI:10.1007/978-3-031-13324-4_44
摘要

Coronavirus disease 2019 (COVID-19) is an infectious disease that has spread globally, disrupting the health care system and claiming millions of lives worldwide. Because of the high number of Covid-19 infections, it has been challenging for medical professionals to manage this crisis. Estimating the Covid-19 percentage can help medical staff categorize patients by severity and prioritize accordingly. With this approach, the intensive care unit (ICU) can free up resuscitation beds for the critical cases and provide other treatments for less severe cases to efficiently manage the healthcare system during a crisis. In this paper, we present a transformer-based method to estimate covid-19 infection percentage for monitoring the evolution of the patient state from computed tomography scans (CT-scans). We used a particular Transformer architecture called Swin Transformer as a backbone network to extract the feature from the CT slice and pass it through multi-layer perceptron (MLP) to obtain covid-19 infection percentage. We evaluated our approach on the covid-19 infection percentage estimation challenge dataset, annotated by two expert radiologists. The experimental results show that the proposed method achieves promising performance with a mean absolute error (MAE) of 4.5042, Pearson correlation coefficient (PC) of 0.9490, root mean square error (RMSE) of 8.0964 on the given Val set leaderboard and a MAE of 3.5569, PC of 0.8547 and RMSE of 7.5102 on the given Test set Leaderboard. These promising results demonstrate the high potential of Swin Transformer architecture for this image regression task of covid-19 infection percentage estimation from CT-scans. The source code of this project can be found at: https://github.com/suman560/Covid-19-infection-percentage-estimation .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CATH发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助拉屎很顺畅采纳,获得10
3秒前
4秒前
Darren发布了新的文献求助10
5秒前
5秒前
CipherSage应助高挑的梦芝采纳,获得10
6秒前
6秒前
科研通AI6应助小颖采纳,获得10
7秒前
小王发布了新的文献求助10
8秒前
8秒前
zzn发布了新的文献求助10
9秒前
7r完成签到,获得积分10
9秒前
张德帅发布了新的文献求助10
10秒前
天天快乐应助Serendipity采纳,获得10
11秒前
11秒前
TT完成签到,获得积分20
11秒前
PROPELLER发布了新的文献求助10
12秒前
一副药发布了新的文献求助10
12秒前
大个应助飘逸百褶裙采纳,获得10
12秒前
hust610wh发布了新的文献求助10
14秒前
今后应助灵活又幸福的胖采纳,获得10
15秒前
星空下的皮先生完成签到,获得积分10
15秒前
15秒前
满意的西牛完成签到,获得积分10
16秒前
无辜凝安完成签到,获得积分10
16秒前
ken131完成签到 ,获得积分0
17秒前
17秒前
活力怜雪完成签到 ,获得积分10
18秒前
BG完成签到,获得积分10
18秒前
Darren完成签到,获得积分10
18秒前
endlessloop发布了新的文献求助10
18秒前
20秒前
zzn完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
西塘古镇的独角兽完成签到,获得积分10
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475655
求助须知:如何正确求助?哪些是违规求助? 4577327
关于积分的说明 14361496
捐赠科研通 4505243
什么是DOI,文献DOI怎么找? 2468525
邀请新用户注册赠送积分活动 1456156
关于科研通互助平台的介绍 1429890