Swin Transformer for COVID-19 Infection Percentage Estimation from CT-Scans

2019年冠状病毒病(COVID-19) 均方误差 计算机科学 平均绝对误差 人工智能 模式识别(心理学) 医学 计算机断层摄影术 机器学习 统计 数学 传染病(医学专业) 病理 疾病 放射科
作者
Suman Chaudhary,Wanting Yang,Yan Qiang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 520-528 被引量:1
标识
DOI:10.1007/978-3-031-13324-4_44
摘要

Coronavirus disease 2019 (COVID-19) is an infectious disease that has spread globally, disrupting the health care system and claiming millions of lives worldwide. Because of the high number of Covid-19 infections, it has been challenging for medical professionals to manage this crisis. Estimating the Covid-19 percentage can help medical staff categorize patients by severity and prioritize accordingly. With this approach, the intensive care unit (ICU) can free up resuscitation beds for the critical cases and provide other treatments for less severe cases to efficiently manage the healthcare system during a crisis. In this paper, we present a transformer-based method to estimate covid-19 infection percentage for monitoring the evolution of the patient state from computed tomography scans (CT-scans). We used a particular Transformer architecture called Swin Transformer as a backbone network to extract the feature from the CT slice and pass it through multi-layer perceptron (MLP) to obtain covid-19 infection percentage. We evaluated our approach on the covid-19 infection percentage estimation challenge dataset, annotated by two expert radiologists. The experimental results show that the proposed method achieves promising performance with a mean absolute error (MAE) of 4.5042, Pearson correlation coefficient (PC) of 0.9490, root mean square error (RMSE) of 8.0964 on the given Val set leaderboard and a MAE of 3.5569, PC of 0.8547 and RMSE of 7.5102 on the given Test set Leaderboard. These promising results demonstrate the high potential of Swin Transformer architecture for this image regression task of covid-19 infection percentage estimation from CT-scans. The source code of this project can be found at: https://github.com/suman560/Covid-19-infection-percentage-estimation .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助儒雅雅山采纳,获得10
刚刚
Sheya发布了新的文献求助10
1秒前
清新的翠发布了新的文献求助10
2秒前
在水一方应助嗯哼哈哈采纳,获得30
2秒前
尽舜尧发布了新的文献求助20
2秒前
jiangjiahao发布了新的文献求助20
3秒前
3秒前
3秒前
4秒前
4秒前
一碗鱼发布了新的文献求助20
4秒前
4秒前
vousme完成签到 ,获得积分10
5秒前
Gengar发布了新的文献求助10
7秒前
蒋若风完成签到,获得积分10
7秒前
蛋子完成签到,获得积分10
7秒前
搜集达人应助嘿咻丶嘿哈采纳,获得10
7秒前
GenX发布了新的文献求助10
7秒前
核桃发布了新的文献求助10
7秒前
8秒前
脑洞疼应助小阳采纳,获得10
8秒前
loading发布了新的文献求助10
8秒前
8秒前
和谐项链发布了新的文献求助10
9秒前
niki完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI2S应助Xwu采纳,获得10
10秒前
10秒前
10秒前
feng完成签到,获得积分10
11秒前
11秒前
lalala发布了新的文献求助10
12秒前
大地之脉关注了科研通微信公众号
12秒前
SciGPT应助无误采纳,获得10
13秒前
儒雅雅山发布了新的文献求助10
13秒前
zzzzzzzz应助加贝采纳,获得10
14秒前
一只菜鸟完成签到 ,获得积分10
14秒前
嗯哼哈哈发布了新的文献求助30
15秒前
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014