Swin Transformer for COVID-19 Infection Percentage Estimation from CT-Scans

2019年冠状病毒病(COVID-19) 均方误差 计算机科学 平均绝对误差 人工智能 模式识别(心理学) 医学 计算机断层摄影术 机器学习 统计 数学 传染病(医学专业) 病理 疾病 放射科
作者
Suman Chaudhary,Wanting Yang,Yan Qiang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 520-528 被引量:1
标识
DOI:10.1007/978-3-031-13324-4_44
摘要

Coronavirus disease 2019 (COVID-19) is an infectious disease that has spread globally, disrupting the health care system and claiming millions of lives worldwide. Because of the high number of Covid-19 infections, it has been challenging for medical professionals to manage this crisis. Estimating the Covid-19 percentage can help medical staff categorize patients by severity and prioritize accordingly. With this approach, the intensive care unit (ICU) can free up resuscitation beds for the critical cases and provide other treatments for less severe cases to efficiently manage the healthcare system during a crisis. In this paper, we present a transformer-based method to estimate covid-19 infection percentage for monitoring the evolution of the patient state from computed tomography scans (CT-scans). We used a particular Transformer architecture called Swin Transformer as a backbone network to extract the feature from the CT slice and pass it through multi-layer perceptron (MLP) to obtain covid-19 infection percentage. We evaluated our approach on the covid-19 infection percentage estimation challenge dataset, annotated by two expert radiologists. The experimental results show that the proposed method achieves promising performance with a mean absolute error (MAE) of 4.5042, Pearson correlation coefficient (PC) of 0.9490, root mean square error (RMSE) of 8.0964 on the given Val set leaderboard and a MAE of 3.5569, PC of 0.8547 and RMSE of 7.5102 on the given Test set Leaderboard. These promising results demonstrate the high potential of Swin Transformer architecture for this image regression task of covid-19 infection percentage estimation from CT-scans. The source code of this project can be found at: https://github.com/suman560/Covid-19-infection-percentage-estimation .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
凤凰山发布了新的文献求助10
1秒前
舒心靖琪完成签到 ,获得积分10
1秒前
清欢完成签到 ,获得积分20
1秒前
alick完成签到,获得积分10
2秒前
科研通AI2S应助拉斯特迪亚采纳,获得10
2秒前
小飞七应助jiangnan采纳,获得10
3秒前
3秒前
3秒前
独角兽完成签到 ,获得积分10
3秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
4秒前
Geng完成签到,获得积分10
5秒前
5秒前
宇_完成签到,获得积分20
5秒前
香蕉觅云应助NEMO采纳,获得10
5秒前
6秒前
6秒前
星辰大海应助247793325采纳,获得20
6秒前
6秒前
灵巧荆发布了新的文献求助10
6秒前
6秒前
haimianbaobao完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
SAW发布了新的文献求助10
9秒前
爆米花应助LiShin采纳,获得10
9秒前
Jasper应助jxcandice采纳,获得10
10秒前
10秒前
Owen应助雾见春采纳,获得10
11秒前
aiming发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
13秒前
无辜之卉发布了新的文献求助10
13秒前
yty发布了新的文献求助10
13秒前
烟花应助卡夫卡没在海边采纳,获得10
14秒前
456发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794