自噬
袋3
癌症研究
过渡(遗传学)
间充质干细胞
化学
细胞生物学
生物
基因
细胞凋亡
生物化学
作者
Hongtao Diao,Kaili Wu,Dingming Lan,Dongwei Wang,Jingjing Zhao,Bingying Huang,Xiaoqi Shao,Ruonan Wang,Huiling Tan,Xinyuan Tang,Meiling Yan,Yue Zhang
出处
期刊:Genes
[MDPI AG]
日期:2022-07-26
卷期号:13 (8): 1338-1338
被引量:8
标识
DOI:10.3390/genes13081338
摘要
Atherosclerosis is a chronic systemic inflammatory disease that causes severe cardiovascular events. B cell lymphoma 2-associated athanogene (BAG3) was proven to participate in the regulation of tumor angiogenesis, neurodegenerative diseases, and cardiac diseases, but its role in atherosclerosis remains unclear. Here, we aim to investigate the role of BAG3 in atherosclerosis and elucidate the potential molecular mechanism. In this study, ApoE−/− mice were given a tail-vein injection of BAG3-overexpressing lentivirus and fed a 12-week high-fat diet (HFD) to investigate the role of BAG3 in atherosclerosis. The overexpression of BAG3 reduced plaque areas and improved atherosclerosis in ApoE−/− mice. Our research proves that BAG3 promotes autophagy in vitro, contributing to the suppression of EndMT in human umbilical vein endothelial cells (HUVECs). Mechanically, autophagy activation is mediated by BAG3 via the interaction between BAG3 and its chaperones HSP70 and HSPB8. In conclusion, BAG3 facilitates autophagy activation via the formation of the chaperone-assisted selective autophagy (CASA) complex interacting with HSP70 and HSPB8, leading to the inhibition of EndMT during the progression of atherosclerosis and indicating that BAG3 is a potential therapeutic target for atherosclerosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI