An intelligent green scheduling system for sustainable cold chain logistics

冷链 计算机科学 调度(生产过程) 遗传算法 运筹学 物流中心 过程管理 业务 运营管理 工程类 机械工程 机器学习
作者
Yuhe Shi,Yun Lin,Ming K. Lim,Ming‐Lang Tseng,Changlu Tan,Yan Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:209: 118378-118378 被引量:36
标识
DOI:10.1016/j.eswa.2022.118378
摘要

This study proposes an intelligent green scheduling system for cold chain logistics (IGSS-CCL) to support the integration and coordination of resources. Post-COVID-19, the traditional cold product market is rapidly converting to retail stores and e-commerce portals owing to social distancing restrictions, which creates a requirement and opportunities for the development of cold chain logistics. However, urban governance requirements, such as pandemic prevention, traffic restriction, energy conservation, and emissions reduction, have added challenges to this development. Therefore, it is vital to design a cold chain logistics scheduling system that considers the economic, safety, and environmental factors. The proposed system includes three parts: (1) the framework structure of the cold chain logistics intelligent scheduling system; (2) a multi-objective scheduling optimization model to allow for efficient and dynamic coordination between the distribution, demand, and external environment; and (3) a two-stage optimization algorithm based on Dijkstra's algorithm and a non-dominated sorting genetic algorithm to support intelligent scheduling operations. Numerical experiments were conducted to analyze the performance of the proposed system and demonstrate its application. The results highlight that multi-objective tactical optimization in the IGSS-CCL is conducive to saving resources, protecting the environment, and promoting the sustainable development of cold chain logistics, which remains ahead of the traditional single-objective optimization method. Managers can use the suggested IGSS-CCL as a decision-support tool to control and supervise the scheduling operations of cold chain logistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天涯发布了新的文献求助10
刚刚
1秒前
兴奋一斩发布了新的文献求助10
1秒前
瘦子张完成签到,获得积分20
1秒前
红汤加煎蛋完成签到,获得积分10
2秒前
小马甲应助雨碎寒江采纳,获得10
2秒前
思源应助往昔采纳,获得10
2秒前
ZW完成签到,获得积分20
3秒前
3秒前
hibye完成签到,获得积分10
5秒前
5秒前
夜幕云端发布了新的文献求助10
6秒前
PPRer完成签到,获得积分10
6秒前
爆米花应助李哈哈采纳,获得10
6秒前
6秒前
打打应助jenniefer采纳,获得10
6秒前
风趣的烨磊完成签到,获得积分10
6秒前
Ava应助风趣采白采纳,获得10
7秒前
7秒前
8秒前
王巧巧完成签到,获得积分10
8秒前
pluto应助zll采纳,获得10
8秒前
小蘑菇应助zll采纳,获得10
8秒前
8秒前
tu发布了新的文献求助10
9秒前
11秒前
寒冷天空完成签到,获得积分10
11秒前
12秒前
lsy发布了新的文献求助10
12秒前
12秒前
徐徐图之完成签到 ,获得积分10
12秒前
张张完成签到 ,获得积分10
12秒前
徐凤年发布了新的文献求助10
13秒前
在水一方应助Mason采纳,获得30
13秒前
Ava应助周周采纳,获得10
13秒前
14秒前
JamesPei应助Ben采纳,获得10
14秒前
kante发布了新的文献求助10
14秒前
清明雨上发布了新的文献求助10
15秒前
16秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083403
求助须知:如何正确求助?哪些是违规求助? 2736768
关于积分的说明 7542379
捐赠科研通 2386033
什么是DOI,文献DOI怎么找? 1265316
科研通“疑难数据库(出版商)”最低求助积分说明 613035
版权声明 597816