Synergistic interlayer and defect engineering of hydrated vanadium oxide toward stable Zn-ion batteries

氧化钒 材料科学 化学工程 离子 氧化物 无机化学 化学 冶金 工程类 有机化学
作者
Jiechang Gao,Cheng Chen,Liyan Ding,Genlin Liu,Tianran Yan,Liang Zhang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:450: 138367-138367 被引量:41
标识
DOI:10.1016/j.cej.2022.138367
摘要

• A strategy of interlayer and defect engineering is developed for aqueous ZIBs. • The Ca ions and V vacancies synergistically enhance the Zn-ion storage capability. • The structural stability is enhanced over long-term cycling because of Ca ions. • An outstanding electrochemical performance is achieved over 3000 cycles. Layered hydrated vanadium oxides are considered as promising cathode materials for aqueous Zn-ion batteries because of their open layered frameworks and multiple valence states of vanadium. However, they usually exhibit poor electrochemical performance due to the instability of layered frameworks. Herein, Ca-intercalated hydrated vanadium oxide (CaVO) nanobelts have been synthesized by a simple hydrothermal method, accompanied with the formation of cationic V vacancies. The intercalated Ca ions and induced V vacancies can not only synergistically enhance the Zn-ion storage capability by offering numerous active sites, but also effectively stabilize the crystal structure over long-term cycling because of the pinning effect of Ca ions, leading to the enhanced electrochemical performance of hydrated vanadium oxide. Consequently, the CaVO nanobelts deliver a high reversible capacity of 310 mAh g -1 at a current rate of 0.5 A g -1 , a superior rate performance of 88 mAh g -1 at 15 A g -1 , and an impressive cycling stability with a capacity retention of 91.7% at 10 A g -1 over 3000 cycles. Our present study demonstrates that the synergistic interlayer and defect engineering is a promising strategy to construct advanced layered cathode materials for practical Zn-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xuan发布了新的文献求助10
1秒前
赵晶晶完成签到,获得积分10
2秒前
实验好难应助dengty采纳,获得10
2秒前
肖趴菜完成签到,获得积分10
2秒前
3秒前
gu发布了新的文献求助10
3秒前
吃不完发布了新的文献求助30
5秒前
冯杰发布了新的文献求助10
5秒前
cc完成签到 ,获得积分10
6秒前
WLLLLL完成签到,获得积分10
7秒前
8秒前
传奇3应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
冯杰完成签到,获得积分10
11秒前
劲秉应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
Singularity应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
Singularity应助科研通管家采纳,获得10
11秒前
劲秉应助科研通管家采纳,获得10
11秒前
Singularity应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
maox1aoxin应助科研通管家采纳,获得30
11秒前
劲秉应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
Singularity应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
迟大猫应助科研通管家采纳,获得10
11秒前
劲秉应助科研通管家采纳,获得10
12秒前
劲秉应助科研通管家采纳,获得10
12秒前
Singularity应助科研通管家采纳,获得10
12秒前
12秒前
15秒前
Zhu发布了新的文献求助10
16秒前
16秒前
充电宝应助南国采纳,获得10
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673662
求助须知:如何正确求助?哪些是违规求助? 3229164
关于积分的说明 9784494
捐赠科研通 2939740
什么是DOI,文献DOI怎么找? 1611281
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736326