Deep learning based distortion restoration and defect segmentation from linear scanning camera images

失真(音乐) 人工智能 计算机科学 计算机视觉 过程(计算) 特征(语言学) 分割 鉴定(生物学) 计算机网络 语言学 植物 生物 操作系统 哲学 放大器 带宽(计算)
作者
Zhengfang Wang,Qingmei Sui,Wei Guo,Jiaqi Zhang,Zhenpeng Li,Yujie Yang,Yiheng Shang,Lilin Zang,Shaohuai Yu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (5): 055402-055402 被引量:2
标识
DOI:10.1088/1361-6501/acad1d
摘要

Abstract With long-term operation of tunnels, the surface of tunnel lining is prone to crack, spalling, water leakage and other defects. Therefore, the detection of tunnel surface defects has become an important process to ensure the safety of tunnel operation. Linear scan cameras have become the main way of tunnel surface defect detection because of their ultrahigh resolution and ultrahigh scanning frequency. However, in the process of collecting tunnel surface images at high speed, the linear scan cameras are easy to cause images distortion, which leads to reduction of tunnel defect identification accuracy. Thus, this paper proposes a tunnel surface distortion image restoration method based on a supervised generative adversarial network, which introduces an attention mechanism to guide the method to calibrate the weights of feature channels. It solves the problem of distortion in the process of images acquisition of the linear scan cameras. Then, to deal with the difficulty in identifying small-size tunnel defects in complex tunnel environments, this paper combines a backbone network with a multi-scale feature fusion module based on the You Only Look At CoefficienTs (YOLACT) network, which enhances the feature extraction ability of the network and improves the accuracy of tunnel surface defect identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮的百褶裙完成签到,获得积分10
刚刚
Annie发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
Crrr完成签到,获得积分10
4秒前
ZWZ完成签到,获得积分10
5秒前
Crrr发布了新的文献求助10
7秒前
Hello应助科研通管家采纳,获得10
8秒前
橘子石榴应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
8秒前
泡面完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
13秒前
chum555完成签到,获得积分10
14秒前
烟花应助无奈的书琴采纳,获得10
15秒前
容荣发布了新的文献求助10
15秒前
15秒前
大火炉发布了新的文献求助10
16秒前
Spirit完成签到,获得积分10
16秒前
余琳发布了新的文献求助10
17秒前
椰子芒果椰子梨完成签到,获得积分10
18秒前
来轩发布了新的文献求助10
20秒前
22秒前
22秒前
我是老大应助余琳采纳,获得10
24秒前
stk完成签到,获得积分10
24秒前
搜集达人应助calendar采纳,获得10
25秒前
26秒前
29秒前
30秒前
30秒前
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812642
关于积分的说明 7895839
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316030
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112