Computing Hierarchical Complexity of the Brain from Electroencephalogram Signals: A Graph Convolutional Network-based Approach

计算机科学 卷积神经网络 小世界网络 人工智能 图形 模式识别(心理学) 脑电图 功率图分析 机器学习 复杂网络 理论计算机科学 神经科学 心理学 万维网
作者
Tanu Wadhera,Mufti Mahmud
标识
DOI:10.1109/ijcnn55064.2022.9892799
摘要

Brain structures and their varying connectivity patterns form complex networks that provide rich information to help in understanding high-order cognitive functions and their relationship with low-order sensory-motor processing. The brains with pathological conditions such as Autism Spectrum Disorder (ASD) exhibit diverse modular networks organised in hierarchies with small-world properties. However, much of the network hierarchy has not been carefully examined in ASD. Different machine learning architectures including Convolutional Neural Networks (CNN) have failed to extract related complex neuronal features and to exploit the hierarchical neural connectivity present at different electrode sites of the electroencephalogram (EEG) data. The presented work has addressed the mentioned limitations by developing a two-layered Visible-Graph Convolutional Network (VGCN) which projects each channel's EEG sample onto nodes of a graph with weighted edges formulated as per the hierarchical visibility among nodes. The proposed model has been applied to EEG signals obtained from ASD and Typical Individuals (TD) and has achieved a classification accuracy of 93.78% in comparison to state-of-the-art methods, including support vector machines (89.52%), deep neural network (78.21%), convolutional network (83.88%) and graph network (86.45%). Other performance metrics such as precision, recall, F1-score and Mathews correlation coefficient showed similar results, hence, supporting the proposed model's strengths. This evidence suggests that graph networks can confidently reveal hierarchical imbalances in the brain functioning of ASD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小陶子完成签到,获得积分10
1秒前
yttttt应助古月采纳,获得10
1秒前
善学以致用应助古月采纳,获得10
1秒前
2秒前
小朱朱发布了新的文献求助10
2秒前
鲁滨逊发布了新的文献求助10
2秒前
可爱凡波完成签到,获得积分10
2秒前
Lee完成签到,获得积分10
2秒前
5秒前
5秒前
orixero应助cc采纳,获得10
5秒前
6秒前
懒羊羊发布了新的文献求助10
6秒前
微微发布了新的文献求助10
7秒前
可爱凡波发布了新的文献求助10
7秒前
8秒前
8秒前
沐曦完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
Lee发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
坦率的匪发布了新的文献求助10
11秒前
CAAA完成签到,获得积分10
11秒前
周周周周周周完成签到,获得积分10
12秒前
ifast发布了新的文献求助10
12秒前
佰态发布了新的文献求助10
12秒前
12秒前
LPeaQ完成签到,获得积分10
12秒前
JK发布了新的文献求助10
13秒前
zzz发布了新的文献求助10
13秒前
MXH发布了新的文献求助10
13秒前
孙昊宇发布了新的文献求助10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798