碳纳米管
材料科学
阴极
储能
纳米线
纳米技术
功率密度
电池(电)
纤维
可穿戴技术
数码产品
复合材料
可穿戴计算机
电气工程
功率(物理)
计算机科学
工程类
嵌入式系统
物理
量子力学
作者
Shuo Kong,Yongbao Feng,Ziming Xu,Xianzhen Wang,Xiaojie Zhang,Xiong Lan,Zhen-Ping Ma,Yagang Yao,Zhenzhong Yong,Qiulong Li
标识
DOI:10.1016/j.electacta.2022.141762
摘要
Fiber-shaped energy storage devices with light weight, superflexibility, and weavability demonstrate promising prospects for application in wearable and portable electronics. Especially, fiber-shaped aqueous rechargeable zinc ion batteries (FARZIBs), which can facilitate the development of wearable electronic products owing to their high safety, low cost, environmental friendliness. Nevertheless, it is very challenging to achieve high rate capability, energy density, and cycling performance simultaneously for the FARZIBs. Herein, a high-performance FARZIB is created from vanadium-based metal-organic frameworks (MOFs) derived vanadic oxide (V2O5) nanowire-bundle arrays (NBAs) grown on highly conductive carbon nanotube fibers (CNTFs) directly as the binder-free cathode. Profiting from high specific area and porous structure of MOFs, as well as arrays structure and binder-free features, our as-assembled FARZIBs exhibited a high capacity of 0.71 mAh cm−2 at a current density of 2 mA cm−2, and demonstrated outstanding rate capability and prominent cycling performance. Moreover, the FARZIBs delivered an extremely high energy density of 215 mWh cm−3 at a power density of 600 mW cm−3. Therefore, our work brings new prospects for the next generation of wearable electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI