Driving-Behavior-Aware Optimal Energy Management Strategy for Multi-Source Fuel Cell Hybrid Electric Vehicles Based on Adaptive Soft Deep-Reinforcement Learning

强化学习 能源管理 计算机科学 燃料电池 电动汽车 钢筋 能量(信号处理) 汽车工程 工程类 人工智能 功率(物理) 结构工程 统计 物理 量子力学 化学工程 数学
作者
Haochen Sun,Fazhan Tao,Zhumu Fu,Aiyun Gao,Longyin Jiao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4127-4146 被引量:38
标识
DOI:10.1109/tits.2022.3233564
摘要

The majority of existing energy management strategies (EMSs), merely considering external driving conditions, often allocate demand power in an irrational way, resulting in a waste of energy and a short service life of power sources. Therefore, it is necessary to integrate driving behavior in EMS to reduce the fuel consumption and improve the lifespan of power sources. In this paper, a driving-behavior-aware adaptive deep-reinforcement-learning (DRL) based EMS is proposed for a three-power-source fuel cell hybrid electric vehicle (FCHEV). To fully utilize each power source, a hierarchical power splitting method is adopted by an adaptive fuzzy filter. Then, a high-performance driving behavior recognizer is employed, and Pontryagin's minimum principle (PMP) method is used to compute the optimal equivalent factor (EF) of each driving behavior. To realize a trade-off between global learning and real-time implementation, an improved multi-learning-space DRL-based algorithm, applying driving-behavior-aware adaptive equivalent consumption minimization strategy (A-ECMS) and soft learning mechanism, is proposed and verified by a series of simulations. Simulation results show that, compared with the benchmark method ECMS, the proposed P-DQL method can reduce the hydrogen consumption by 49.9% on average, and the total cost to use by 31.4%, showing a promising ability to increase fuel economy and reduce hydrogen consumption and the total cost to use of FCHEV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meteor应助科研通管家采纳,获得10
刚刚
一一应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得30
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
牛战士完成签到,获得积分10
1秒前
坦率尔曼发布了新的文献求助10
1秒前
lanrete完成签到,获得积分10
1秒前
Lily发布了新的文献求助10
1秒前
QW111发布了新的文献求助10
2秒前
内向忆山完成签到,获得积分10
2秒前
米修发布了新的文献求助10
2秒前
小李发布了新的文献求助10
2秒前
拟好啊发布了新的文献求助10
2秒前
2秒前
邱穗发布了新的文献求助10
3秒前
大模型应助xzx采纳,获得10
4秒前
4秒前
俭朴的半雪完成签到 ,获得积分10
4秒前
Psycho发布了新的文献求助10
4秒前
4秒前
所所应助姜彩秀采纳,获得10
4秒前
李爱国应助温柔梦松采纳,获得10
5秒前
高兴映菱完成签到,获得积分20
5秒前
张桂钊发布了新的文献求助10
5秒前
BareBear应助今晚吃什么采纳,获得10
5秒前
优雅战斗机完成签到,获得积分20
5秒前
AHR发布了新的文献求助10
6秒前
6秒前
小蛋糕卖男孩完成签到,获得积分10
6秒前
tingting完成签到 ,获得积分10
6秒前
6秒前
喜宝完成签到 ,获得积分10
6秒前
大劲发布了新的文献求助10
7秒前
cigarhat发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409994
求助须知:如何正确求助?哪些是违规求助? 4527505
关于积分的说明 14111164
捐赠科研通 4441880
什么是DOI,文献DOI怎么找? 2437744
邀请新用户注册赠送积分活动 1429674
关于科研通互助平台的介绍 1407750