Driving-Behavior-Aware Optimal Energy Management Strategy for Multi-Source Fuel Cell Hybrid Electric Vehicles Based on Adaptive Soft Deep-Reinforcement Learning

强化学习 能源管理 计算机科学 燃料电池 电动汽车 钢筋 能量(信号处理) 汽车工程 工程类 人工智能 功率(物理) 结构工程 统计 物理 量子力学 化学工程 数学
作者
Haochen Sun,Fazhan Tao,Zhumu Fu,Aiyun Gao,Longyin Jiao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4127-4146 被引量:28
标识
DOI:10.1109/tits.2022.3233564
摘要

The majority of existing energy management strategies (EMSs), merely considering external driving conditions, often allocate demand power in an irrational way, resulting in a waste of energy and a short service life of power sources. Therefore, it is necessary to integrate driving behavior in EMS to reduce the fuel consumption and improve the lifespan of power sources. In this paper, a driving-behavior-aware adaptive deep-reinforcement-learning (DRL) based EMS is proposed for a three-power-source fuel cell hybrid electric vehicle (FCHEV). To fully utilize each power source, a hierarchical power splitting method is adopted by an adaptive fuzzy filter. Then, a high-performance driving behavior recognizer is employed, and Pontryagin's minimum principle (PMP) method is used to compute the optimal equivalent factor (EF) of each driving behavior. To realize a trade-off between global learning and real-time implementation, an improved multi-learning-space DRL-based algorithm, applying driving-behavior-aware adaptive equivalent consumption minimization strategy (A-ECMS) and soft learning mechanism, is proposed and verified by a series of simulations. Simulation results show that, compared with the benchmark method ECMS, the proposed P-DQL method can reduce the hydrogen consumption by 49.9% on average, and the total cost to use by 31.4%, showing a promising ability to increase fuel economy and reduce hydrogen consumption and the total cost to use of FCHEV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑嘻嘻完成签到,获得积分10
刚刚
Lmy发布了新的文献求助10
刚刚
Lea_at_完成签到 ,获得积分20
2秒前
巴扎嘿发布了新的文献求助10
2秒前
万能图书馆应助外向芹菜采纳,获得10
3秒前
平常的狗应助喝喝和采纳,获得10
3秒前
过儿发布了新的文献求助10
3秒前
CQ发布了新的文献求助10
3秒前
郭翔发布了新的文献求助10
4秒前
SYLH应助聪慧的以彤采纳,获得10
6秒前
zs完成签到,获得积分10
7秒前
英姑应助小怪兽采纳,获得10
7秒前
7秒前
7秒前
8秒前
冬瓜鑫完成签到,获得积分10
8秒前
时闲应助纯真雁菱采纳,获得10
9秒前
zhangpeng完成签到,获得积分10
11秒前
11秒前
0814d发布了新的文献求助10
11秒前
王家腾发布了新的文献求助10
12秒前
sci公主完成签到,获得积分10
12秒前
喝喝和发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
墨菲特发布了新的文献求助10
14秒前
15秒前
丘比特应助科研通管家采纳,获得10
16秒前
风清扬应助科研通管家采纳,获得10
16秒前
ll应助科研通管家采纳,获得10
16秒前
ll应助科研通管家采纳,获得10
16秒前
ll应助科研通管家采纳,获得10
16秒前
ll应助科研通管家采纳,获得10
16秒前
ll应助科研通管家采纳,获得10
16秒前
ll应助科研通管家采纳,获得10
16秒前
16秒前
ll应助科研通管家采纳,获得10
16秒前
16秒前
Owen应助科研通管家采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970062
求助须知:如何正确求助?哪些是违规求助? 3514782
关于积分的说明 11175968
捐赠科研通 3250119
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951