Multi-Objective Evolutionary Algorithm With Machine Learning and Local Search for an Energy-Efficient Disassembly Line Balancing Problem in Remanufacturing

再制造 计算机科学 数学优化 帕累托原理 算法 多目标优化 工程类 数学 机器学习 机械工程
作者
Guangdong Tian,Cheng Zhang,Xuesong Zhang,Yixiong Feng,Gang Yuan,Tao Peng,Duc Truong Pham
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:145 (5) 被引量:12
标识
DOI:10.1115/1.4056573
摘要

Abstract Product disassembly is a vital element of recycling and remanufacturing processes. The disassembly line balancing problem (DLBP), i.e., how to assign a set of tasks to a disassembly workstation, is crucial for a product disassembly process. Based on the importance of energy efficiency in product disassembly and the trend toward green remanufacturing, this study proposes an optimization model for a multi-objective disassembly line balancing problem that aims to minimize the idle rate, smoothness, cost, and energy consumption during the disassembly operation. Due to the complex nature of the optimization problem, a discrete whale optimization algorithm is proposed in this study, which is developed as an extension of the whale optimization algorithm. To enable the algorithm to solve discrete optimization problems, we propose coding and decoding methods that combine the features of DLBP. First of all, the initial disassembly solution is obtained by using K-means clustering to speed up the exchange of individual information. After that, new methods for updating disassembly sequences are developed, in which a local search strategy is introduced to increase the accuracy of the algorithm. Finally, the algorithm is used to solve the disassembly problem of a worm reducer and the first 12 feasible task allocation options in the Pareto frontier are shown. A comparison with typically existing algorithms confirms the high performance of the proposed whale optimization algorithm, which has a good balance of solution quality and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
世界需要我完成签到,获得积分10
刚刚
1秒前
小彻完成签到,获得积分10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
wy.he应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
哒哒哒应助科研通管家采纳,获得30
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
sissiarno应助科研通管家采纳,获得100
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
无花果应助科研通管家采纳,获得26
3秒前
3秒前
4秒前
山上雪完成签到 ,获得积分10
5秒前
5秒前
迅速的仰完成签到,获得积分10
6秒前
乐乐应助jssssssss采纳,获得10
7秒前
9秒前
happy发布了新的文献求助10
9秒前
10秒前
Jana发布了新的文献求助10
12秒前
12秒前
13秒前
温暖的幼菱完成签到,获得积分10
14秒前
14秒前
Lili发布了新的文献求助10
16秒前
18秒前
Galaxy发布了新的文献求助10
18秒前
下文献发布了新的文献求助10
19秒前
19秒前
诗音时雨发布了新的文献求助10
20秒前
21秒前
完美世界应助林方人点点采纳,获得10
21秒前
大模型应助happy采纳,获得10
23秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056175
求助须知:如何正确求助?哪些是违规求助? 2712737
关于积分的说明 7432964
捐赠科研通 2357715
什么是DOI,文献DOI怎么找? 1249040
科研通“疑难数据库(出版商)”最低求助积分说明 606843
版权声明 596195