Multi-Objective Evolutionary Algorithm With Machine Learning and Local Search for an Energy-Efficient Disassembly Line Balancing Problem in Remanufacturing

再制造 计算机科学 数学优化 帕累托原理 算法 多目标优化 工程类 数学 机器学习 机械工程
作者
Guangdong Tian,Cheng Zhang,Xuesong Zhang,Yixiong Feng,Gang Yuan,Tao Peng,Duc Truong Pham
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:145 (5) 被引量:12
标识
DOI:10.1115/1.4056573
摘要

Abstract Product disassembly is a vital element of recycling and remanufacturing processes. The disassembly line balancing problem (DLBP), i.e., how to assign a set of tasks to a disassembly workstation, is crucial for a product disassembly process. Based on the importance of energy efficiency in product disassembly and the trend toward green remanufacturing, this study proposes an optimization model for a multi-objective disassembly line balancing problem that aims to minimize the idle rate, smoothness, cost, and energy consumption during the disassembly operation. Due to the complex nature of the optimization problem, a discrete whale optimization algorithm is proposed in this study, which is developed as an extension of the whale optimization algorithm. To enable the algorithm to solve discrete optimization problems, we propose coding and decoding methods that combine the features of DLBP. First of all, the initial disassembly solution is obtained by using K-means clustering to speed up the exchange of individual information. After that, new methods for updating disassembly sequences are developed, in which a local search strategy is introduced to increase the accuracy of the algorithm. Finally, the algorithm is used to solve the disassembly problem of a worm reducer and the first 12 feasible task allocation options in the Pareto frontier are shown. A comparison with typically existing algorithms confirms the high performance of the proposed whale optimization algorithm, which has a good balance of solution quality and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
波bo发布了新的文献求助10
1秒前
党文英发布了新的文献求助10
2秒前
4秒前
wanci应助疯狂的海亦采纳,获得10
5秒前
白马非马发布了新的文献求助10
5秒前
lixingl完成签到,获得积分10
6秒前
7秒前
Augenstern完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
zwc发布了新的文献求助10
8秒前
冬冬完成签到,获得积分20
10秒前
10秒前
yu发布了新的文献求助10
11秒前
852应助甜蜜的阿飞采纳,获得10
11秒前
yar应助lixingl采纳,获得10
11秒前
11秒前
刘先生完成签到,获得积分20
11秒前
11秒前
111发布了新的文献求助10
11秒前
wang发布了新的文献求助10
12秒前
13秒前
小林发布了新的文献求助10
13秒前
嘚嘚完成签到,获得积分10
14秒前
调皮万宝路完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
鳙鱼完成签到 ,获得积分10
16秒前
鞥枊发布了新的文献求助10
16秒前
天天快乐应助航某人采纳,获得10
17秒前
空2完成签到 ,获得积分0
18秒前
joshar发布了新的文献求助10
18秒前
华仔应助潇洒的茗茗采纳,获得10
18秒前
葛泽荣完成签到,获得积分10
19秒前
wendy发布了新的文献求助20
20秒前
Zhang1867完成签到,获得积分10
21秒前
21秒前
英姑应助小太阳采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505933
关于积分的说明 11126932
捐赠科研通 3237900
什么是DOI,文献DOI怎么找? 1789404
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802976