Multi-Objective Evolutionary Algorithm With Machine Learning and Local Search for an Energy-Efficient Disassembly Line Balancing Problem in Remanufacturing

再制造 计算机科学 数学优化 帕累托原理 算法 多目标优化 工程类 数学 机器学习 机械工程
作者
Guangdong Tian,Cheng Zhang,Xuesong Zhang,Yixiong Feng,Gang Yuan,Tao Peng,Duc Truong Pham
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:145 (5) 被引量:12
标识
DOI:10.1115/1.4056573
摘要

Abstract Product disassembly is a vital element of recycling and remanufacturing processes. The disassembly line balancing problem (DLBP), i.e., how to assign a set of tasks to a disassembly workstation, is crucial for a product disassembly process. Based on the importance of energy efficiency in product disassembly and the trend toward green remanufacturing, this study proposes an optimization model for a multi-objective disassembly line balancing problem that aims to minimize the idle rate, smoothness, cost, and energy consumption during the disassembly operation. Due to the complex nature of the optimization problem, a discrete whale optimization algorithm is proposed in this study, which is developed as an extension of the whale optimization algorithm. To enable the algorithm to solve discrete optimization problems, we propose coding and decoding methods that combine the features of DLBP. First of all, the initial disassembly solution is obtained by using K-means clustering to speed up the exchange of individual information. After that, new methods for updating disassembly sequences are developed, in which a local search strategy is introduced to increase the accuracy of the algorithm. Finally, the algorithm is used to solve the disassembly problem of a worm reducer and the first 12 feasible task allocation options in the Pareto frontier are shown. A comparison with typically existing algorithms confirms the high performance of the proposed whale optimization algorithm, which has a good balance of solution quality and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sara发布了新的文献求助10
刚刚
Even发布了新的文献求助10
刚刚
1秒前
畅快的一鸣完成签到 ,获得积分10
1秒前
清野完成签到,获得积分10
2秒前
fffff发布了新的文献求助10
2秒前
2秒前
憨憨发布了新的文献求助10
3秒前
BarryK关注了科研通微信公众号
3秒前
cqnuly发布了新的文献求助10
4秒前
上官若男应助123采纳,获得10
5秒前
777发布了新的文献求助10
5秒前
科研通AI2S应助欢喜的天空采纳,获得10
5秒前
fcxzvb发布了新的文献求助30
6秒前
6秒前
7秒前
科研通AI6应助gg采纳,获得10
7秒前
Sara完成签到,获得积分10
8秒前
LUO完成签到,获得积分10
8秒前
9秒前
qly应助呜呼采纳,获得30
11秒前
科研通AI6应助fffff采纳,获得10
11秒前
12秒前
12秒前
大鱼头完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
蓝天应助Esther采纳,获得10
14秒前
自由的果汁完成签到,获得积分10
14秒前
14秒前
梦蝴蝶完成签到,获得积分10
14秒前
syk完成签到,获得积分20
14秒前
脑洞疼应助WHDD采纳,获得10
15秒前
程艳发布了新的文献求助30
15秒前
科研通AI2S应助777采纳,获得10
16秒前
16秒前
17秒前
001发布了新的文献求助10
17秒前
Getlogger完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633748
求助须知:如何正确求助?哪些是违规求助? 4029579
关于积分的说明 12467677
捐赠科研通 3715862
什么是DOI,文献DOI怎么找? 2050393
邀请新用户注册赠送积分活动 1081949
科研通“疑难数据库(出版商)”最低求助积分说明 964173