An Incremental Learning Algorithm on Imbalanced Data for Network Intrusion Detection Systems

计算机科学 Boosting(机器学习) 机器学习 人工智能 入侵检测系统 渐进式学习 集成学习 基于群体的增量学习 阿达布思 数据挖掘 稳健性(进化) 分类器(UML) 遗传算法 生物化学 化学 基因
作者
Mahendra Data,Masayoshi Aritsugi
标识
DOI:10.1145/3556223.3556252
摘要

Incremental learning is a promising algorithm for creating an adaptive network intrusion detection system (IDS) model. In contrast with batch learning models, incremental learning models can be retrained easily when new network intrusion data emerge. Moreover, some incremental learning models, such as the Hoeffding Tree model, can be retrained only using latest training data. This advantage is appealing because computer networks produce enormous amounts of data every day. Using incremental learning models for detecting the ever-growing network intrusions can save computational resources while preserving the performance of the models. However, network data suffer from the imbalanced data problem where the data distribution of the classes in the training data is often severely disproportional. This imbalanced data problem is affecting the performance of incremental learning algorithms. To mitigate this problem, we propose an incremental learning algorithm for network IDSs that can learn from imbalanced data. Our proposed method is an ensemble incremental learning algorithm composed of the Hoeffding Tree, incremental Adaptive Boosting (AdaBoost), and Hard Sampling algorithms. The experimental results show that our proposed model has superior performance compared to the other incremental learning models tested in this study. Moreover, our proposed method increases the robustness of the incremental learning model against the imbalanced data problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
轨迹应助科研通管家采纳,获得20
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
刚刚
机灵柚子应助科研通管家采纳,获得10
刚刚
刚刚
轨迹应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
机灵柚子应助科研通管家采纳,获得10
刚刚
刚刚
852应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
情怀应助爱你明天见采纳,获得10
刚刚
猪猪hero应助科研通管家采纳,获得10
1秒前
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
哈哈发布了新的文献求助10
1秒前
万能图书馆应助从剑杭采纳,获得10
2秒前
热情惮完成签到,获得积分20
2秒前
3秒前
疯少完成签到,获得积分10
4秒前
科妍通AI2_1应助左丘映易采纳,获得10
4秒前
啊哈完成签到,获得积分10
5秒前
6秒前
Jasper应助毛绒绒窝铺采纳,获得10
6秒前
Asteroid完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770594
求助须知:如何正确求助?哪些是违规求助? 5586008
关于积分的说明 15424556
捐赠科研通 4904087
什么是DOI,文献DOI怎么找? 2638509
邀请新用户注册赠送积分活动 1586384
关于科研通互助平台的介绍 1541462