亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Incremental Learning Algorithm on Imbalanced Data for Network Intrusion Detection Systems

计算机科学 Boosting(机器学习) 机器学习 人工智能 入侵检测系统 渐进式学习 集成学习 基于群体的增量学习 阿达布思 数据挖掘 稳健性(进化) 分类器(UML) 遗传算法 生物化学 化学 基因
作者
Mahendra Data,Masayoshi Aritsugi
标识
DOI:10.1145/3556223.3556252
摘要

Incremental learning is a promising algorithm for creating an adaptive network intrusion detection system (IDS) model. In contrast with batch learning models, incremental learning models can be retrained easily when new network intrusion data emerge. Moreover, some incremental learning models, such as the Hoeffding Tree model, can be retrained only using latest training data. This advantage is appealing because computer networks produce enormous amounts of data every day. Using incremental learning models for detecting the ever-growing network intrusions can save computational resources while preserving the performance of the models. However, network data suffer from the imbalanced data problem where the data distribution of the classes in the training data is often severely disproportional. This imbalanced data problem is affecting the performance of incremental learning algorithms. To mitigate this problem, we propose an incremental learning algorithm for network IDSs that can learn from imbalanced data. Our proposed method is an ensemble incremental learning algorithm composed of the Hoeffding Tree, incremental Adaptive Boosting (AdaBoost), and Hard Sampling algorithms. The experimental results show that our proposed model has superior performance compared to the other incremental learning models tested in this study. Moreover, our proposed method increases the robustness of the incremental learning model against the imbalanced data problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
10秒前
18秒前
20秒前
25秒前
sisyphus发布了新的文献求助10
26秒前
29秒前
ZH完成签到 ,获得积分10
30秒前
ZXneuro完成签到,获得积分10
32秒前
circle完成签到,获得积分10
35秒前
37秒前
38秒前
Loney发布了新的文献求助10
42秒前
50秒前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
龍一应助铭铭采纳,获得10
1分钟前
jessicaw完成签到,获得积分10
1分钟前
FashionBoy应助livialiu采纳,获得30
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
livialiu发布了新的文献求助30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
英俊的铭应助livialiu采纳,获得10
2分钟前
2分钟前
livialiu发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059624
关于积分的说明 9067236
捐赠科研通 2750080
什么是DOI,文献DOI怎么找? 1508958
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896