Mechanical properties and multifunctionality of AlB2-type transition metal diborides *

材料科学 价电子 剪切模量 价(化学) 共价键 过渡金属 超导电性 化学键 原子半径 化学物理 结晶学 催化作用 凝聚态物理 化学 复合材料 电子 物理 有机化学 量子力学 生物化学
作者
Zhuang Li,Bo Zhao,Lu Wang,Qiang Tao,Pinwen Zhu
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
卷期号:35 (7): 074002-074002 被引量:3
标识
DOI:10.1088/1361-648x/aca85f
摘要

Transition metal diborides (TMdBs,P6/mmm, AlB2-type) have attracted much attention for decades, due to TMdBs can be conductors, superconductors, magnetism materials, and catalysts. The layered structure caused by the borophene subunit is the source of functions and also makes TMdBs a potential bank of Mbene. However, TMdBs also exhibit high hardness which is not supposed to have in the layered structure. The high hardness of TMdBs arises from covalent bonds of boron-boron (B-B) and strongp-dorbit hybridization of B and TM. While strong B-TM bonds will eliminate the layered structure which may damage the functional properties. Understanding the basic mechanism of hardness and function is significant to achieve optimal TMdBs. This work summarizes the basic properties of TMdBs including hardness, superconductor, and catalytic properties. It can be found that Young's modulus (E) and Shear modulus (G) are beneficial for the hardness of TMdBs and the Poisson's ratio is the opposite. Increasing the atomic radius of TM brings an improvement in the hardness of TMdBs before it reaches the highest value of 1.47 Å, beyond which hardness decreases. Besides, TMdBs also have excellent activity comparable with some noble metals for hydrogen evolution reaction, which is closely related to the d-band center. More importantly, higher valence electron concentrations were found to be adverse to the hardness and superconductivity of TMdBs and greatly affect their catalytic properties. This review is of guiding significance for further exploring the relationship between structures and properties of TMdBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助能干的以寒采纳,获得10
刚刚
1秒前
345678与发布了新的文献求助10
1秒前
忧伤的向日葵应助崔同学采纳,获得10
2秒前
夜寻发布了新的文献求助30
3秒前
有点甜完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
顺心的心情完成签到,获得积分10
6秒前
LI发布了新的文献求助10
8秒前
哈哈哈哈完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
carrieschen发布了新的文献求助30
10秒前
10秒前
田様应助毛毛采纳,获得10
10秒前
科研通AI6应助wang采纳,获得10
10秒前
10秒前
愉快洋葱完成签到,获得积分10
11秒前
Barium完成签到,获得积分10
12秒前
小密母发布了新的文献求助10
12秒前
Max发布了新的文献求助10
12秒前
开心的兔子完成签到 ,获得积分10
13秒前
14秒前
ddd发布了新的文献求助10
14秒前
14秒前
lwq发布了新的文献求助10
14秒前
15秒前
15秒前
乐宝发布了新的文献求助10
15秒前
15秒前
mmol发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
科研通AI6应助炙热的香芦采纳,获得10
18秒前
anticyclone完成签到,获得积分10
18秒前
玄叶完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548