An ecologically-constrained deep learning model for tropical leaf phenology monitoring using PlanetScope satellites

物候学 遥感 环境科学 成像光谱仪 植物 分光计 地质学 生物 物理 量子力学
作者
Jing Wang,Guangqin Song,Michael J. Liddell,Leonor Patrícia Cerdeira Morellato,Calvin K. F. Lee,Dedi Yang,Bruna Alberton,Matteo Detto,Xuanlong Ma,Yingyi Zhao,Henry C.H. Yeung,Hongsheng Zhang,Michael K. Ng,Bruce Nelson,Alfredo Huete,Jin Wu
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:286: 113429-113429 被引量:17
标识
DOI:10.1016/j.rse.2022.113429
摘要

In tropical forests, leaf phenology signals leaf-on/off status and exhibits considerable variability across scales from a single tree-crown to the entire forest ecosystem. Such phenology signals importantly regulate large-scale biogeochemical cycles and regional climate. PlanetScope CubeSats data with a 3-m resolution and near-daily global coverage provide an unprecedented opportunity to monitor both fine- and ecosystem-scale phenology variability along large environmental gradients. However, a scalable method that accurately characterizes leaf phenology from PlanetScope with biophysically meaningful metrics remains lacking. We developed an index-guided, ecologically constrained autoencoder (IG-ECAE) method to automatically derive a deciduousness metric (percentage of upper tree canopies with leaf-off status within an image pixel) from PlanetScope. The IG-ECAE first estimated the reflectance spectra of leafy/leafless canopies based on their spectral indices characteristics, then used the derived reflectance spectra to guide an autoencoder deep learning method with additional ecological constraints to refine the reflectance spectra, and finally used linear spectral unmixing to estimate the relative abundance of leafless canopies (or deciduousness) per PlanetScope image pixel. We tested the IG-ECAE method at 16 tropical forest sites spanning multiple continents and a large precipitation gradient (1470–2819 mm year−1). Among these sites, we evaluated the PlanetScope-derived deciduousness against corresponding measures derived from WorldView-2 (n = 9 sites) and local phenocams (n = 9 sites). Our results show that PlanetScope-derived deciduousness agrees: 1) with that derived from WorldView-2 at the patch level (90 m × 90 m) with r2 = 0.89 across all sites; and 2) with that derived from phenocams to quantify ecosystem-scale seasonality with r2 ranging from 0.62 to 0.96. These results demonstrate the effectiveness and scalability of IG-ECAE in characterizing the wide variability in deciduousness across scales from pixels to forest ecosystems, and from a single date to the full annual cycle, indicating the potential for using high-resolution satellites to track the large-scale phenological patterns and response of tropical forests to climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大白发布了新的文献求助10
2秒前
2秒前
无花果应助jiaman1031采纳,获得10
2秒前
little发布了新的文献求助100
3秒前
微笑无敌瑶完成签到,获得积分10
4秒前
4秒前
Unicorn完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
醉意拥桃枝完成签到 ,获得积分10
5秒前
仁爱柠檬发布了新的文献求助10
6秒前
杰老爷发布了新的文献求助10
6秒前
爆米花应助xianbei采纳,获得10
7秒前
李爱国应助大白采纳,获得10
7秒前
kkai完成签到,获得积分10
7秒前
煌大河完成签到 ,获得积分10
8秒前
9秒前
风清扬发布了新的文献求助10
9秒前
离蒲完成签到 ,获得积分10
10秒前
从容元菱发布了新的文献求助10
10秒前
10秒前
wanci应助蛋挞采纳,获得10
11秒前
彩色初柔完成签到,获得积分10
11秒前
lisa发布了新的文献求助10
13秒前
14秒前
拍照哥完成签到,获得积分20
14秒前
Ki_Ayasato应助@A采纳,获得10
16秒前
诚心的海白完成签到 ,获得积分10
16秒前
腼腆的大碗完成签到,获得积分10
16秒前
Owen应助迷路的藏鸟采纳,获得10
17秒前
浪子发布了新的文献求助10
17秒前
刘020107完成签到,获得积分10
18秒前
李益强完成签到,获得积分10
19秒前
21秒前
Circle发布了新的文献求助10
21秒前
Duke_ethan完成签到,获得积分10
22秒前
耶啵完成签到 ,获得积分10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207295
求助须知:如何正确求助?哪些是违规求助? 4385308
关于积分的说明 13656553
捐赠科研通 4243869
什么是DOI,文献DOI怎么找? 2328416
邀请新用户注册赠送积分活动 1326114
关于科研通互助平台的介绍 1278325