An ecologically-constrained deep learning model for tropical leaf phenology monitoring using PlanetScope satellites

物候学 遥感 环境科学 成像光谱仪 植物 分光计 地质学 生物 物理 量子力学
作者
Jing Wang,Guangqin Song,Michael J. Liddell,Leonor Patrícia Cerdeira Morellato,Calvin K. F. Lee,Dedi Yang,Bruna Alberton,Matteo Detto,Xuanlong Ma,Yingyi Zhao,Henry C.H. Yeung,Hongsheng Zhang,Michael K. Ng,Bruce Nelson,Alfredo Huete,Jin Wu
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:286: 113429-113429 被引量:17
标识
DOI:10.1016/j.rse.2022.113429
摘要

In tropical forests, leaf phenology signals leaf-on/off status and exhibits considerable variability across scales from a single tree-crown to the entire forest ecosystem. Such phenology signals importantly regulate large-scale biogeochemical cycles and regional climate. PlanetScope CubeSats data with a 3-m resolution and near-daily global coverage provide an unprecedented opportunity to monitor both fine- and ecosystem-scale phenology variability along large environmental gradients. However, a scalable method that accurately characterizes leaf phenology from PlanetScope with biophysically meaningful metrics remains lacking. We developed an index-guided, ecologically constrained autoencoder (IG-ECAE) method to automatically derive a deciduousness metric (percentage of upper tree canopies with leaf-off status within an image pixel) from PlanetScope. The IG-ECAE first estimated the reflectance spectra of leafy/leafless canopies based on their spectral indices characteristics, then used the derived reflectance spectra to guide an autoencoder deep learning method with additional ecological constraints to refine the reflectance spectra, and finally used linear spectral unmixing to estimate the relative abundance of leafless canopies (or deciduousness) per PlanetScope image pixel. We tested the IG-ECAE method at 16 tropical forest sites spanning multiple continents and a large precipitation gradient (1470–2819 mm year−1). Among these sites, we evaluated the PlanetScope-derived deciduousness against corresponding measures derived from WorldView-2 (n = 9 sites) and local phenocams (n = 9 sites). Our results show that PlanetScope-derived deciduousness agrees: 1) with that derived from WorldView-2 at the patch level (90 m × 90 m) with r2 = 0.89 across all sites; and 2) with that derived from phenocams to quantify ecosystem-scale seasonality with r2 ranging from 0.62 to 0.96. These results demonstrate the effectiveness and scalability of IG-ECAE in characterizing the wide variability in deciduousness across scales from pixels to forest ecosystems, and from a single date to the full annual cycle, indicating the potential for using high-resolution satellites to track the large-scale phenological patterns and response of tropical forests to climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kqhys完成签到,获得积分10
1秒前
FACEISIN完成签到,获得积分10
3秒前
爱学有机发布了新的文献求助10
3秒前
我不吃葱发布了新的文献求助20
3秒前
科研通AI5应助无私追命采纳,获得10
3秒前
zhangyu应助过时的又槐采纳,获得10
4秒前
4秒前
5秒前
身法马可波罗完成签到 ,获得积分10
6秒前
6秒前
7秒前
chloe完成签到 ,获得积分10
8秒前
辛勤的芾发布了新的文献求助10
9秒前
丁仪发布了新的文献求助10
9秒前
风中飞绿完成签到,获得积分20
9秒前
脑洞疼应助TRY采纳,获得10
9秒前
小趴菜完成签到,获得积分10
9秒前
wuyu完成签到,获得积分10
9秒前
11秒前
11秒前
bkagyin应助哦1采纳,获得10
12秒前
周奔富关注了科研通微信公众号
13秒前
14秒前
我不吃葱发布了新的文献求助10
14秒前
芝士雪豹发布了新的文献求助10
14秒前
南有乔木发布了新的文献求助10
16秒前
16秒前
17秒前
无私追命发布了新的文献求助10
17秒前
丹曦发布了新的文献求助10
18秒前
18秒前
20秒前
李健的小迷弟应助wyp采纳,获得10
21秒前
adi完成签到,获得积分10
21秒前
搜集达人应助doby采纳,获得10
22秒前
黄大师完成签到,获得积分10
22秒前
123发布了新的文献求助10
22秒前
无风海发布了新的文献求助20
23秒前
Epiphany发布了新的文献求助10
23秒前
lcz发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992746
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263200
捐赠科研通 3273346
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809609