材料科学
制作
田口方法
退火(玻璃)
生物医学工程
钛合金
植入
复合材料
合金
外科
医学
病理
替代医学
作者
Bhanupratap Gaur,Samrat Sagar,Chetana Madhukar Suryawanshi,Nishant M. Tikekar,Rupesh Ghyar,B. Ravi
出处
期刊:Rapid Prototyping Journal
[Emerald (MCB UP)]
日期:2022-12-02
卷期号:29 (5): 959-970
被引量:1
标识
DOI:10.1108/rpj-05-2022-0149
摘要
Purpose Ti6Al4V alloy patient-customized implants (PCI) are often fabricated using laser powder bed fusion (LPBF) and annealed to enhance the microstructural, physical and mechanical properties. This study aims to demonstrate the effects of annealing on the physio-mechanical properties to select optimal process parameters. Design/methodology/approach Test samples were fabricated using the Taguchi L9 approach by varying parameters such as laser power (LP), laser velocity (LV) and hatch distance (HD) to three levels. Physical and mechanical test results were used to optimize the parameters for fabricating as-built and annealed implants separately using Grey relational analysis. An optimized parameter set was used for fabricating biological test samples, followed by animal testing to validate the qualified parameters. Findings Two optimized sets of process parameters (LP = 100 W, LV = 500 mm/s and HD = 0.08 mm; and LP = 300 W, LV = 1,350 mm/s and HD = 0.08 mm) are suggested suitable for implant fabrication regardless of the inclusion of annealing in the manufacturing process. The absence of any necrosis or reaction on the local tissues after nine weeks validated the suitability of the parameter set for implants. Practical implications To help PCI manufacturers in parameter selection and to exclude annealing from the manufacturing process for faster implant delivery. Originality/value To the best of the authors’ knowledge, this is probably a first attempt that suggests LPBF parameters that are independent of inclusion of annealing in implant fabrication process.
科研通智能强力驱动
Strongly Powered by AbleSci AI