RT-Blink: A Method Toward Real-Time Blink Detection From Single Frontal EEG Signal

计算机科学 脑电图 人工智能 脑-机接口 随机森林 模式识别(心理学) 窗口(计算) 样本熵 语音识别 计算机视觉 心理学 精神科 操作系统
作者
Yuang Zhang,Xiangwei Zheng,Weizhi Xu,Hong Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2794-2802 被引量:4
标识
DOI:10.1109/jsen.2022.3232176
摘要

Eye blinks take an important role for electroencephalography (EEG) signals that on one hand, they can severely impact the EEG signals, and on the other hand, they may provide useful information for brain–computer interface (BCI) and scientific applications. In particular, it is challenging to detect blinks in real time from a single channel of EEG signals. In this work, we propose a short windowed and random forest based method toward the Real-Time Blink detection (RT-Blink), which balances the processing granularity and computation complexity. RT-Blink uses a potential blink (PB) boundary detecting algorithm and a pretrained random forest (RF) model with a set of features, including sample entropy (SampEn), standard deviation (SD), range of amplitude (RA), and rate of grade (RG), which enables fully automated identification of the duration of blinks from a single-channel EEG signal. The window size of RT-Blink can be adjusted according to the processing speed of the underlying hardware and the requirement of real time, which can be down to one-point EEG data. RT-Blink provides a scalable framework, which can be realized in software, hardware accelerator, or their mixture. Using EEG data contaminated by blinks, we show that RT-Blink achieves 96.54% and 91.25% for average sensitivity and precision, respectively. The time window is 60 ms based on our computer, with minimized overlapping for blink boundary detection. The average processing time is 5.07 ms for each time window, with average 1.65 ms of SD for all the EEG test cases. The results suggest that RT-Blink has promising potential toward real-time EEG applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MILL发布了新的文献求助10
1秒前
月光入梦完成签到 ,获得积分10
2秒前
HC完成签到,获得积分10
3秒前
琪琪发布了新的文献求助10
3秒前
4秒前
淡定的思松应助风的季节采纳,获得10
5秒前
所所应助mm采纳,获得10
5秒前
6秒前
荒年完成签到,获得积分10
6秒前
魁梧的曼凡完成签到,获得积分10
6秒前
7秒前
研一小刘发布了新的文献求助10
7秒前
陈莹完成签到,获得积分20
7秒前
qi发布了新的文献求助30
8秒前
8秒前
Wyan完成签到,获得积分20
8秒前
我是老大应助通~采纳,获得10
9秒前
Jenny应助淡定紫菱采纳,获得10
9秒前
逆流的鱼完成签到 ,获得积分10
10秒前
10秒前
liuqian完成签到,获得积分10
11秒前
Hou完成签到 ,获得积分10
11秒前
反杀闰土的猹完成签到 ,获得积分20
11秒前
所所应助cc采纳,获得10
12秒前
邵裘完成签到,获得积分10
12秒前
丘比特应助yin采纳,获得10
12秒前
13秒前
13秒前
13秒前
希望天下0贩的0应助sss采纳,获得20
13秒前
拼搏向前发布了新的文献求助10
13秒前
紫罗兰花海完成签到 ,获得积分10
14秒前
琪琪完成签到,获得积分10
15秒前
15秒前
爆米花应助高兴藏花采纳,获得10
15秒前
orixero应助Rrr采纳,获得10
15秒前
16秒前
张今天也要做科研呀完成签到,获得积分10
16秒前
humorlife完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794