A dynamic multi-modal fusion network for ovarian tumor differentiation

计算机科学 杠杆(统计) 参数化复杂度 情态动词 人工智能 构造(python库) 模式识别(心理学) 机器学习 算法 化学 高分子化学 程序设计语言
作者
Yang Li,Beiji Zou,Jing Wu,Yulan Dai,Harrison X. Bai,Zhicheng Jiao
标识
DOI:10.1109/bibm55620.2022.9995556
摘要

Accurate ovarian tumor differentiation is a challenging task where the benign and malignant tumors share similar T1C and T2WI MRI appearances. Therefore, it is necessary to leverage additional multi-modal data, e.g., the age, CA125level, and other clinical information, which are helpful but rarely exploited. In this paper, we propose a dynamic fusion network that can adaptively make full use of multi-modal data, including MRI and clinical information, to realize precise ovarian tumor differentiation. Specifically, we design a dynamic nonlinear module (D-Non-L module) on the top of the image representation. The D-Non-L module is formulated as an iterative nonlinear projection parameterized by the learned features of the patient-wise clinical information. With the help of this module, the interaction between clinical features and image features could be achieved to adaptively improve the discrimination of visual representations. Moreover, we construct a dual-path-based architecture to fully exploit the complementary information from T1C and T2WI MRIs. Extensive experimental results on the locally organized ovarian tumor dataset demonstrate that our methods are superior to the single-modal and single-path-based methods. And the proposed dynamic non-linear module obtains the best performance compared with other multi-modal fusion strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
frozensun完成签到,获得积分10
1秒前
2秒前
耍酷的熠彤完成签到,获得积分10
2秒前
Rainlistener完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
Owen应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
jjn应助科研通管家采纳,获得10
4秒前
淡淡的豁完成签到,获得积分0
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
Wxl应助科研通管家采纳,获得200
4秒前
夜月残阳应助科研通管家采纳,获得10
4秒前
luxkex完成签到,获得积分10
4秒前
小青椒应助科研通管家采纳,获得50
4秒前
Jasper应助cdragon采纳,获得20
4秒前
传奇3应助科研通管家采纳,获得10
5秒前
蛋黄酥酥应助科研通管家采纳,获得10
5秒前
认真子默完成签到,获得积分10
5秒前
lzy应助科研通管家采纳,获得10
5秒前
夜月残阳应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
tiezhu应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得20
5秒前
Frank应助科研通管家采纳,获得10
5秒前
夜月残阳应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
6秒前
6秒前
之桃完成签到 ,获得积分10
6秒前
6秒前
1sunpf完成签到,获得积分10
6秒前
小马甲应助zzuwxj采纳,获得10
7秒前
spf完成签到,获得积分0
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665002
求助须知:如何正确求助?哪些是违规求助? 4874181
关于积分的说明 15110894
捐赠科研通 4824136
什么是DOI,文献DOI怎么找? 2582650
邀请新用户注册赠送积分活动 1536595
关于科研通互助平台的介绍 1495195