A Simulation Study on the Effect of Layer Thickness Variation in Selective Laser Melting

选择性激光熔化 材料科学 复合材料 稳健性(进化) 图层(电子) 有限元法 逐层 离散元法 激光扫描 变形(气象学) 计算机模拟 机械 生物系统 激光器 微观结构 光学 结构工程 计算机科学 模拟 工程类 生物化学 化学 物理 基因 生物
作者
Vaishak Ramesh Sagar,Samuel Lorin,Kristina Wärmefjord,Rikard Söderberg
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:145 (2)
标识
DOI:10.1115/1.4055851
摘要

Abstract Selective laser melting (SLM) has gained prominence in the manufacturing industry for its ability to produce lightweight components. As the raw material used is in powder form, the stochastic nature of the powder distribution influences the powder layer thickness and affects the final build quality. In this paper, a multi-layer multi-track simulation study is conducted to investigate the effect of stochastic powder distribution on the layer thickness and plastic strain in a printed geometry. A faster simulation approach is employed to simulate multiple layers. First, the powder distribution and the melt layer thickness of the first layer are obtained from discrete element method (DEM) and computational fluid dynamics (CFD) simulations respectively. Next, the melt layer thickness of the first layer is used as an input to the finite element (FE) based structural mechanics solver to predict the deformation and layer thickness of subsequent layers. Two nominal layer thicknesses 67.4 μm and 20 μm were considered. Two particle size distribution (PSD) configurations and two scanning strategies were tested. The results showed that variation in PSD and scanning strategy leads to variation in layer thickness which in turn leads to variation in the plastic strain that is known to drive the deformation. However, the nominal layer thickness of 20 μm was found to be less influenced by the PSD configuration. The proposed simulation approach and the insights achieved can be used as inputs in the part-scale simulations for geometric robustness evaluation in the early design stages of SLM products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slimayw12发布了新的文献求助10
2秒前
鲤鱼舫发布了新的文献求助10
2秒前
3秒前
3秒前
江湖护卫舰完成签到,获得积分10
4秒前
4秒前
醒不来的猫完成签到,获得积分10
4秒前
4秒前
丁丁丁发布了新的文献求助100
5秒前
外向的以珊完成签到,获得积分20
6秒前
guajiguaji发布了新的文献求助10
7秒前
xiuou完成签到,获得积分10
8秒前
PG完成签到 ,获得积分0
9秒前
ooww完成签到,获得积分20
9秒前
dawn发布了新的文献求助10
10秒前
俊逸幻柏发布了新的文献求助10
11秒前
想不到吧完成签到,获得积分10
12秒前
13秒前
不配.应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
勤奋忆彤发布了新的文献求助10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
14秒前
wanci应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
ZhiyunXu2012完成签到 ,获得积分10
14秒前
16秒前
丘比特应助糊涂的沛山采纳,获得10
16秒前
17秒前
21发布了新的文献求助10
19秒前
枫夕完成签到,获得积分10
20秒前
突突突发布了新的文献求助10
21秒前
Hi发布了新的文献求助20
21秒前
xiao完成签到,获得积分10
22秒前
su完成签到 ,获得积分10
22秒前
小蘑菇完成签到,获得积分10
23秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206987
求助须知:如何正确求助?哪些是违规求助? 2856316
关于积分的说明 8104204
捐赠科研通 2521502
什么是DOI,文献DOI怎么找? 1354661
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613292