已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

‘Can we predict aggression?’—Determining the predictors of aggression among individuals with substance use disorder in China undergoing enforced detoxification through machine learning

侵略 心理学 临床心理学 药物滥用 人口 品行障碍 冲动性 背景(考古学) 情境伦理学 发展心理学 精神科 医学 社会心理学 生物 环境卫生 古生物学
作者
Zekai Lu,Chuyin Xie,Nian Liu,Ying Xie,Hong Lu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:320: 628-637 被引量:5
标识
DOI:10.1016/j.jad.2022.10.005
摘要

The general aggression model has shown that both individual and situational factors can predict aggression. However, past research has tended to discuss these two factors separately, which might lead to inconsistency. This study addresses this gap by examining the importance of each predictor of aggression in a Chinese compulsory drug treatment population and further explores the predictors of aggression in various substance use disorder populations. Analyses were conducted using a sample of 894 male participants (mean = 38.30, SD = 8.38) in Chinese compulsory drug rehab. A machine learning model named LightGBM was employed to make predictions. We then used a game-theoretic explanatory technique, SHAP, to estimate the effect of predictors. In the full-sample model, psychological security, parental conflict, and impulsivity were the top 3 predictors. Depression, childhood abuse, and alexithymia positively predicted aggression, whereas psychological security, family cohesion, and gratitude negatively predicted aggression. There were significant differences in the predictive effects of depressants and stimulants. Although the importance of predictors varied between drug-use groups, several individual and situational factors were consistently the most important predictors. All participants in this study were male, and the data were acquired through self-reports from the participants. Domestic and nondomestic aggression are not distinguished. Additionally, our findings cannot support causal conclusions. This study tested a series of classical theories of the predictors of aggression in China's compulsory drug treatment context and extended the ideas of the GAM to various substance use disorder groups. The findings have important implications for aggression treatment. • An innovative machine learning method, SHAP, was employed to interpret the important factors that predict aggression. • Psychological security, parental conflict and impulsivity were the top 3 significant predictors of aggression. • There is a significant difference in the predictive effect of depressants and stimulants on aggression, with stimulants being more likely to predict aggression. • Alexithymia was one of the top predictors in all models and positively predicted aggression. • Improving the emotional regulation of individuals in with substance use disorder and improving their relationships with family and friends may be an effective way to reduce aggression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wbh发布了新的文献求助10
3秒前
4秒前
5秒前
悦悦应助兴奋的故事采纳,获得10
7秒前
Hello应助wbh采纳,获得10
9秒前
zzy完成签到,获得积分10
10秒前
李田田发布了新的文献求助10
10秒前
科研通AI5应助梦里格斗家采纳,获得10
11秒前
11秒前
12秒前
16秒前
青蛙的第二滴口水完成签到,获得积分10
19秒前
20秒前
22秒前
22秒前
晾猫人发布了新的文献求助10
24秒前
coffee完成签到 ,获得积分10
26秒前
27秒前
yuan完成签到 ,获得积分10
28秒前
28秒前
29秒前
29秒前
30秒前
Rondab应助龍Ryu采纳,获得30
30秒前
单于笑卉发布了新的文献求助10
32秒前
Jasper应助吉恩采纳,获得10
32秒前
Woaimama724发布了新的文献求助10
33秒前
孟长歌发布了新的文献求助10
34秒前
True发布了新的文献求助10
35秒前
37秒前
甜美无剑应助Helios采纳,获得50
37秒前
含糊的非笑发布了新的文献求助100
37秒前
orixero应助怕黑乐采纳,获得10
38秒前
40秒前
Orange应助科研通管家采纳,获得10
42秒前
彭于晏应助科研通管家采纳,获得10
42秒前
852应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
丘比特应助科研通管家采纳,获得10
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994433
求助须知:如何正确求助?哪些是违规求助? 3534839
关于积分的说明 11266585
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749