‘Can we predict aggression?’—Determining the predictors of aggression among individuals with substance use disorder in China undergoing enforced detoxification through machine learning

侵略 心理学 临床心理学 药物滥用 人口 品行障碍 冲动性 背景(考古学) 情境伦理学 发展心理学 精神科 医学 社会心理学 生物 环境卫生 古生物学
作者
Zekai Lu,Chuyin Xie,Nian Liu,Ying Xie,Hong Lu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:320: 628-637 被引量:4
标识
DOI:10.1016/j.jad.2022.10.005
摘要

The general aggression model has shown that both individual and situational factors can predict aggression. However, past research has tended to discuss these two factors separately, which might lead to inconsistency. This study addresses this gap by examining the importance of each predictor of aggression in a Chinese compulsory drug treatment population and further explores the predictors of aggression in various substance use disorder populations. Analyses were conducted using a sample of 894 male participants (mean = 38.30, SD = 8.38) in Chinese compulsory drug rehab. A machine learning model named LightGBM was employed to make predictions. We then used a game-theoretic explanatory technique, SHAP, to estimate the effect of predictors. In the full-sample model, psychological security, parental conflict, and impulsivity were the top 3 predictors. Depression, childhood abuse, and alexithymia positively predicted aggression, whereas psychological security, family cohesion, and gratitude negatively predicted aggression. There were significant differences in the predictive effects of depressants and stimulants. Although the importance of predictors varied between drug-use groups, several individual and situational factors were consistently the most important predictors. All participants in this study were male, and the data were acquired through self-reports from the participants. Domestic and nondomestic aggression are not distinguished. Additionally, our findings cannot support causal conclusions. This study tested a series of classical theories of the predictors of aggression in China's compulsory drug treatment context and extended the ideas of the GAM to various substance use disorder groups. The findings have important implications for aggression treatment. • An innovative machine learning method, SHAP, was employed to interpret the important factors that predict aggression. • Psychological security, parental conflict and impulsivity were the top 3 significant predictors of aggression. • There is a significant difference in the predictive effect of depressants and stimulants on aggression, with stimulants being more likely to predict aggression. • Alexithymia was one of the top predictors in all models and positively predicted aggression. • Improving the emotional regulation of individuals in with substance use disorder and improving their relationships with family and friends may be an effective way to reduce aggression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanmu2010完成签到,获得积分10
刚刚
通~发布了新的文献求助10
1秒前
2秒前
小白应助SUS采纳,获得10
2秒前
lipengjiajun应助xiangxiang采纳,获得10
3秒前
田様应助caoyy采纳,获得10
3秒前
biubiu发布了新的文献求助10
3秒前
钰LM完成签到,获得积分10
3秒前
4秒前
wangyun完成签到,获得积分10
6秒前
lixm发布了新的文献求助10
10秒前
12秒前
研友_VZG7GZ应助务实的犀牛采纳,获得10
13秒前
14秒前
狂野代桃发布了新的文献求助10
17秒前
加菲丰丰应助Anquan采纳,获得30
17秒前
biubiu完成签到,获得积分10
18秒前
茶茶发布了新的文献求助10
18秒前
20秒前
酷波er应助健忘捕采纳,获得10
20秒前
李健应助irisjlj采纳,获得10
22秒前
001完成签到 ,获得积分20
23秒前
sgjj33完成签到,获得积分10
25秒前
情怀应助凝子老师采纳,获得10
26秒前
迪丽盐巴完成签到,获得积分10
27秒前
31秒前
32秒前
合适的致远完成签到,获得积分10
34秒前
小马甲应助sgjj33采纳,获得10
36秒前
所所应助奋斗灵波采纳,获得10
37秒前
38秒前
慌糖完成签到,获得积分10
39秒前
liu完成签到,获得积分10
41秒前
柔弱凡松发布了新的文献求助10
43秒前
43秒前
45秒前
QQQQ发布了新的文献求助20
45秒前
zy完成签到 ,获得积分10
45秒前
坦率若颜发布了新的文献求助10
49秒前
terence应助YYJ25采纳,获得10
50秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851