‘Can we predict aggression?’—Determining the predictors of aggression among individuals with substance use disorder in China undergoing enforced detoxification through machine learning

侵略 心理学 临床心理学 药物滥用 人口 品行障碍 冲动性 背景(考古学) 情境伦理学 发展心理学 精神科 医学 社会心理学 生物 环境卫生 古生物学
作者
Zekai Lu,Chuyin Xie,Nian Liu,Ying Xie,Hong Lu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:320: 628-637 被引量:5
标识
DOI:10.1016/j.jad.2022.10.005
摘要

The general aggression model has shown that both individual and situational factors can predict aggression. However, past research has tended to discuss these two factors separately, which might lead to inconsistency. This study addresses this gap by examining the importance of each predictor of aggression in a Chinese compulsory drug treatment population and further explores the predictors of aggression in various substance use disorder populations. Analyses were conducted using a sample of 894 male participants (mean = 38.30, SD = 8.38) in Chinese compulsory drug rehab. A machine learning model named LightGBM was employed to make predictions. We then used a game-theoretic explanatory technique, SHAP, to estimate the effect of predictors. In the full-sample model, psychological security, parental conflict, and impulsivity were the top 3 predictors. Depression, childhood abuse, and alexithymia positively predicted aggression, whereas psychological security, family cohesion, and gratitude negatively predicted aggression. There were significant differences in the predictive effects of depressants and stimulants. Although the importance of predictors varied between drug-use groups, several individual and situational factors were consistently the most important predictors. All participants in this study were male, and the data were acquired through self-reports from the participants. Domestic and nondomestic aggression are not distinguished. Additionally, our findings cannot support causal conclusions. This study tested a series of classical theories of the predictors of aggression in China's compulsory drug treatment context and extended the ideas of the GAM to various substance use disorder groups. The findings have important implications for aggression treatment. • An innovative machine learning method, SHAP, was employed to interpret the important factors that predict aggression. • Psychological security, parental conflict and impulsivity were the top 3 significant predictors of aggression. • There is a significant difference in the predictive effect of depressants and stimulants on aggression, with stimulants being more likely to predict aggression. • Alexithymia was one of the top predictors in all models and positively predicted aggression. • Improving the emotional regulation of individuals in with substance use disorder and improving their relationships with family and friends may be an effective way to reduce aggression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ScarlettU完成签到,获得积分10
刚刚
冷艳后妈完成签到,获得积分10
1秒前
1秒前
2秒前
orixero应助一朵约尔采纳,获得10
3秒前
mary611发布了新的文献求助10
3秒前
Owen应助郭郝采纳,获得10
3秒前
kuikichu完成签到,获得积分10
4秒前
微笑淡忘完成签到,获得积分20
4秒前
慕青应助难过酸奶采纳,获得10
5秒前
天天快乐应助李闻闻采纳,获得10
5秒前
hign发布了新的文献求助10
5秒前
共享精神应助夜凉如水采纳,获得10
5秒前
5秒前
xiaowen完成签到,获得积分10
6秒前
123完成签到 ,获得积分10
6秒前
6秒前
雪凝清霜发布了新的文献求助10
7秒前
summer完成签到,获得积分10
7秒前
琂当归完成签到,获得积分10
7秒前
爆米花应助阔达的太阳采纳,获得10
9秒前
开朗的抽屉完成签到 ,获得积分10
9秒前
10秒前
WindChaser完成签到,获得积分10
10秒前
11秒前
taco发布了新的文献求助10
11秒前
米兰完成签到,获得积分10
12秒前
renxuda发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
15秒前
大苹果完成签到,获得积分10
15秒前
yy发布了新的文献求助10
16秒前
跳跃的邪欢完成签到,获得积分10
16秒前
17秒前
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192262
求助须知:如何正确求助?哪些是违规求助? 4375259
关于积分的说明 13624367
捐赠科研通 4229578
什么是DOI,文献DOI怎么找? 2320065
邀请新用户注册赠送积分活动 1318422
关于科研通互助平台的介绍 1268650