‘Can we predict aggression?’—Determining the predictors of aggression among individuals with substance use disorder in China undergoing enforced detoxification through machine learning

侵略 心理学 临床心理学 药物滥用 人口 品行障碍 冲动性 背景(考古学) 情境伦理学 发展心理学 精神科 医学 社会心理学 生物 环境卫生 古生物学
作者
Zekai Lu,Chuyin Xie,Nian Liu,Ying Xie,Hong Lu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:320: 628-637 被引量:4
标识
DOI:10.1016/j.jad.2022.10.005
摘要

The general aggression model has shown that both individual and situational factors can predict aggression. However, past research has tended to discuss these two factors separately, which might lead to inconsistency. This study addresses this gap by examining the importance of each predictor of aggression in a Chinese compulsory drug treatment population and further explores the predictors of aggression in various substance use disorder populations. Analyses were conducted using a sample of 894 male participants (mean = 38.30, SD = 8.38) in Chinese compulsory drug rehab. A machine learning model named LightGBM was employed to make predictions. We then used a game-theoretic explanatory technique, SHAP, to estimate the effect of predictors. In the full-sample model, psychological security, parental conflict, and impulsivity were the top 3 predictors. Depression, childhood abuse, and alexithymia positively predicted aggression, whereas psychological security, family cohesion, and gratitude negatively predicted aggression. There were significant differences in the predictive effects of depressants and stimulants. Although the importance of predictors varied between drug-use groups, several individual and situational factors were consistently the most important predictors. All participants in this study were male, and the data were acquired through self-reports from the participants. Domestic and nondomestic aggression are not distinguished. Additionally, our findings cannot support causal conclusions. This study tested a series of classical theories of the predictors of aggression in China's compulsory drug treatment context and extended the ideas of the GAM to various substance use disorder groups. The findings have important implications for aggression treatment. • An innovative machine learning method, SHAP, was employed to interpret the important factors that predict aggression. • Psychological security, parental conflict and impulsivity were the top 3 significant predictors of aggression. • There is a significant difference in the predictive effect of depressants and stimulants on aggression, with stimulants being more likely to predict aggression. • Alexithymia was one of the top predictors in all models and positively predicted aggression. • Improving the emotional regulation of individuals in with substance use disorder and improving their relationships with family and friends may be an effective way to reduce aggression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sduwl完成签到,获得积分10
1秒前
5秒前
nusiew完成签到,获得积分10
6秒前
开放又亦完成签到 ,获得积分10
8秒前
YYYhl发布了新的文献求助30
9秒前
qinqiny完成签到 ,获得积分10
10秒前
庚朝年完成签到 ,获得积分10
14秒前
凉面完成签到 ,获得积分10
15秒前
魁拔蛮吉完成签到 ,获得积分10
17秒前
Hhhh完成签到 ,获得积分10
19秒前
sure完成签到 ,获得积分10
19秒前
单纯乘风完成签到 ,获得积分10
20秒前
逢强必赢完成签到,获得积分10
21秒前
36456657完成签到,获得积分0
23秒前
ninomae完成签到 ,获得积分10
23秒前
贾舒涵完成签到,获得积分10
24秒前
28秒前
苹果路人完成签到,获得积分10
32秒前
她的城完成签到,获得积分0
33秒前
34秒前
深入肺腑发布了新的文献求助20
34秒前
38秒前
可爱邓邓完成签到 ,获得积分10
38秒前
tzjz_zrz发布了新的文献求助30
43秒前
可爱的紫菜完成签到 ,获得积分10
44秒前
yu_z完成签到 ,获得积分10
52秒前
tzjz_zrz完成签到,获得积分10
58秒前
wangeil007完成签到,获得积分10
59秒前
吴雪完成签到 ,获得积分10
1分钟前
arpeggione发布了新的文献求助10
1分钟前
彭于彦祖应助科研通管家采纳,获得30
1分钟前
充电宝应助Steven采纳,获得10
1分钟前
arpeggione完成签到,获得积分10
1分钟前
琦qi完成签到 ,获得积分10
1分钟前
lx完成签到,获得积分10
1分钟前
Pauline完成签到 ,获得积分10
1分钟前
简奥斯汀完成签到 ,获得积分10
1分钟前
cugwzr完成签到,获得积分10
1分钟前
卞卞完成签到,获得积分10
1分钟前
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244791
求助须知:如何正确求助?哪些是违规求助? 2888434
关于积分的说明 8252925
捐赠科研通 2556928
什么是DOI,文献DOI怎么找? 1385522
科研通“疑难数据库(出版商)”最低求助积分说明 650176
邀请新用户注册赠送积分活动 626303