Robust Diagnosis of Breast Cancer Based on Silver Nanoparticles by Surface-Enhanced Raman Spectroscopy and Machine Learning

表面增强拉曼光谱 拉曼光谱 乳腺癌 纳米颗粒 银纳米粒子 材料科学 光谱学 纳米技术 癌症 拉曼散射 医学 内科学 光学 物理 量子力学
作者
Meihuan Wang,Kaining Zhang,Lifan Yue,Xiao Liu,Yongchao Lai,Huawei Zhang
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (11): 13672-13680 被引量:2
标识
DOI:10.1021/acsanm.4c02191
摘要

Due to the high intrusiveness of pathological diagnosis and the elusiveness of liquid biopsy, breast cancer (BC) is still in a dilemma between robustness and invasiveness. In our study, a molecular-specific diagnostic strategy was introduced for screening BC at an early stage, which utilizes surface-enhanced Raman spectroscopy (SERS) based on Ag NPs at 50–60 nm to acquire the fingerprint SERS spectra of fine needle aspiration (FNA) samples and machine learning for data mining. The SERS spectra of FNA samples from 78 patients were analyzed. Multiple machine learning algorithms including principal component analysis (PCA), principal component analysis–linear discriminant analysis (PCA-LDA), partial least-squares discriminant analysis (PLS-DA), and support vector machine (SVM) models were applied to deconstruct those SERS spectra for discrimination of different types of breast disease. Significant biochemical differences were found in SERS spectra of breast fibroadenoma, breast hyperplasia, and BC. With the SVM algorithm, the diagnostic sensitivity and specificity of BC, breast fibroadenomas, and breast hyperplasia can reach 94.74%, 83.33%, 81.82% and 86.96%, 100%, 94.00%, respectively. The hyphenated method of SERS and machine learning would re-energize FNA and enable FNA diagnosis of breast disease early and precisely, benefiting patients' treatment efficacy and patient life cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
胡图图发布了新的文献求助10
2秒前
4秒前
蜜HHH完成签到 ,获得积分10
5秒前
6秒前
6秒前
我要文献发布了新的文献求助10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
10秒前
暴躁小龙发布了新的文献求助10
11秒前
张润泽完成签到 ,获得积分10
11秒前
12秒前
文档发布了新的文献求助10
12秒前
13秒前
15秒前
16秒前
16秒前
17秒前
18秒前
18秒前
烟花应助zwk采纳,获得10
20秒前
蔡芝艳关注了科研通微信公众号
20秒前
YI完成签到,获得积分10
23秒前
23秒前
大个应助科研通管家采纳,获得10
24秒前
24秒前
充电宝应助科研通管家采纳,获得10
25秒前
SYLH应助科研通管家采纳,获得20
25秒前
Ava应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
25秒前
su发布了新的文献求助10
27秒前
钟垠州完成签到 ,获得积分10
27秒前
27秒前
活力的妙之完成签到 ,获得积分10
27秒前
丘比特应助只想困瞌睡采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158