Robust Diagnosis of Breast Cancer Based on Silver Nanoparticles by Surface-Enhanced Raman Spectroscopy and Machine Learning

表面增强拉曼光谱 拉曼光谱 乳腺癌 纳米颗粒 银纳米粒子 材料科学 光谱学 纳米技术 癌症 拉曼散射 医学 内科学 光学 物理 量子力学
作者
Meihuan Wang,Kaining Zhang,Lifan Yue,Xiao Liu,Yongchao Lai,Huawei Zhang
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (11): 13672-13680 被引量:2
标识
DOI:10.1021/acsanm.4c02191
摘要

Due to the high intrusiveness of pathological diagnosis and the elusiveness of liquid biopsy, breast cancer (BC) is still in a dilemma between robustness and invasiveness. In our study, a molecular-specific diagnostic strategy was introduced for screening BC at an early stage, which utilizes surface-enhanced Raman spectroscopy (SERS) based on Ag NPs at 50–60 nm to acquire the fingerprint SERS spectra of fine needle aspiration (FNA) samples and machine learning for data mining. The SERS spectra of FNA samples from 78 patients were analyzed. Multiple machine learning algorithms including principal component analysis (PCA), principal component analysis–linear discriminant analysis (PCA-LDA), partial least-squares discriminant analysis (PLS-DA), and support vector machine (SVM) models were applied to deconstruct those SERS spectra for discrimination of different types of breast disease. Significant biochemical differences were found in SERS spectra of breast fibroadenoma, breast hyperplasia, and BC. With the SVM algorithm, the diagnostic sensitivity and specificity of BC, breast fibroadenomas, and breast hyperplasia can reach 94.74%, 83.33%, 81.82% and 86.96%, 100%, 94.00%, respectively. The hyphenated method of SERS and machine learning would re-energize FNA and enable FNA diagnosis of breast disease early and precisely, benefiting patients' treatment efficacy and patient life cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zyq完成签到,获得积分20
1秒前
兜兜完成签到,获得积分10
2秒前
2秒前
无花果应助fanpengzhen采纳,获得10
2秒前
我迷了鹿发布了新的文献求助10
2秒前
明天过后发布了新的文献求助10
3秒前
小白发布了新的文献求助10
3秒前
3秒前
浪而而发布了新的文献求助10
4秒前
4秒前
gwh完成签到,获得积分10
4秒前
ninwa20完成签到,获得积分10
5秒前
锌迹完成签到,获得积分10
5秒前
sheep2fly完成签到,获得积分10
5秒前
Han发布了新的文献求助10
5秒前
Gotyababy发布了新的文献求助10
5秒前
科研通AI6应助shuangcheng采纳,获得10
6秒前
6秒前
李牧发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助50
7秒前
噜噜晓发布了新的文献求助10
7秒前
独木桥完成签到,获得积分10
7秒前
sonya1122发布了新的文献求助10
8秒前
常渊完成签到,获得积分10
8秒前
9秒前
搜集达人应助科研牛马采纳,获得10
9秒前
鱿鱼发布了新的文献求助10
9秒前
Hoooo...发布了新的文献求助10
9秒前
10秒前
10秒前
科研通AI5应助登山香菇采纳,获得10
10秒前
戚雅柔完成签到 ,获得积分10
10秒前
pluto应助黄丁文采纳,获得10
10秒前
科目三应助李牧采纳,获得10
10秒前
betsy完成签到,获得积分20
10秒前
小小吴完成签到 ,获得积分10
11秒前
11秒前
徐昊雯完成签到,获得积分10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646