Robust Diagnosis of Breast Cancer Based on Silver Nanoparticles by Surface-Enhanced Raman Spectroscopy and Machine Learning

表面增强拉曼光谱 拉曼光谱 乳腺癌 纳米颗粒 银纳米粒子 材料科学 光谱学 纳米技术 癌症 拉曼散射 医学 内科学 光学 物理 量子力学
作者
Meihuan Wang,Kaining Zhang,Lifan Yue,Xiao Liu,Yongchao Lai,Huawei Zhang
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (11): 13672-13680 被引量:6
标识
DOI:10.1021/acsanm.4c02191
摘要

Due to the high intrusiveness of pathological diagnosis and the elusiveness of liquid biopsy, breast cancer (BC) is still in a dilemma between robustness and invasiveness. In our study, a molecular-specific diagnostic strategy was introduced for screening BC at an early stage, which utilizes surface-enhanced Raman spectroscopy (SERS) based on Ag NPs at 50–60 nm to acquire the fingerprint SERS spectra of fine needle aspiration (FNA) samples and machine learning for data mining. The SERS spectra of FNA samples from 78 patients were analyzed. Multiple machine learning algorithms including principal component analysis (PCA), principal component analysis–linear discriminant analysis (PCA-LDA), partial least-squares discriminant analysis (PLS-DA), and support vector machine (SVM) models were applied to deconstruct those SERS spectra for discrimination of different types of breast disease. Significant biochemical differences were found in SERS spectra of breast fibroadenoma, breast hyperplasia, and BC. With the SVM algorithm, the diagnostic sensitivity and specificity of BC, breast fibroadenomas, and breast hyperplasia can reach 94.74%, 83.33%, 81.82% and 86.96%, 100%, 94.00%, respectively. The hyphenated method of SERS and machine learning would re-energize FNA and enable FNA diagnosis of breast disease early and precisely, benefiting patients' treatment efficacy and patient life cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助one采纳,获得10
刚刚
1秒前
Ziyi_Xu完成签到,获得积分10
2秒前
像棉花糖的云完成签到 ,获得积分10
3秒前
Weiweiweixiao完成签到,获得积分10
3秒前
Arsenc完成签到,获得积分20
4秒前
wsf完成签到,获得积分20
4秒前
思源应助典雅问寒采纳,获得10
4秒前
5秒前
饱满凡灵完成签到,获得积分10
6秒前
6秒前
酷波er应助hhllhh采纳,获得10
7秒前
SophiaMX发布了新的文献求助10
7秒前
慕青应助ashley采纳,获得10
9秒前
大模型应助陈七采纳,获得10
9秒前
orixero应助珝潏采纳,获得10
9秒前
852应助肥波采纳,获得10
10秒前
Wang发布了新的文献求助10
10秒前
阿拉丁完成签到,获得积分10
11秒前
852应助xiaowei666采纳,获得30
11秒前
Akim应助李昕123采纳,获得10
11秒前
研友_VZG7GZ应助外向铃铛采纳,获得10
13秒前
爆米花应助xinlinwang采纳,获得10
13秒前
14秒前
15秒前
16秒前
17秒前
18秒前
18秒前
阿拉丁发布了新的文献求助10
19秒前
19秒前
浮游应助一只酸牛牛采纳,获得10
19秒前
20秒前
SiqiZhang发布了新的文献求助10
21秒前
one发布了新的文献求助10
21秒前
喵喵子发布了新的文献求助10
22秒前
丘比特应助cjf采纳,获得10
22秒前
22秒前
22秒前
x夏天发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541