Robust Diagnosis of Breast Cancer Based on Silver Nanoparticles by Surface-Enhanced Raman Spectroscopy and Machine Learning

表面增强拉曼光谱 拉曼光谱 乳腺癌 纳米颗粒 银纳米粒子 材料科学 光谱学 纳米技术 癌症 拉曼散射 医学 内科学 光学 物理 量子力学
作者
Meihuan Wang,Kaining Zhang,Lifan Yue,Xiao Liu,Yongchao Lai,Huawei Zhang
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (11): 13672-13680 被引量:6
标识
DOI:10.1021/acsanm.4c02191
摘要

Due to the high intrusiveness of pathological diagnosis and the elusiveness of liquid biopsy, breast cancer (BC) is still in a dilemma between robustness and invasiveness. In our study, a molecular-specific diagnostic strategy was introduced for screening BC at an early stage, which utilizes surface-enhanced Raman spectroscopy (SERS) based on Ag NPs at 50–60 nm to acquire the fingerprint SERS spectra of fine needle aspiration (FNA) samples and machine learning for data mining. The SERS spectra of FNA samples from 78 patients were analyzed. Multiple machine learning algorithms including principal component analysis (PCA), principal component analysis–linear discriminant analysis (PCA-LDA), partial least-squares discriminant analysis (PLS-DA), and support vector machine (SVM) models were applied to deconstruct those SERS spectra for discrimination of different types of breast disease. Significant biochemical differences were found in SERS spectra of breast fibroadenoma, breast hyperplasia, and BC. With the SVM algorithm, the diagnostic sensitivity and specificity of BC, breast fibroadenomas, and breast hyperplasia can reach 94.74%, 83.33%, 81.82% and 86.96%, 100%, 94.00%, respectively. The hyphenated method of SERS and machine learning would re-energize FNA and enable FNA diagnosis of breast disease early and precisely, benefiting patients' treatment efficacy and patient life cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的勒完成签到 ,获得积分10
刚刚
刚刚
bkagyin应助zzzz采纳,获得10
1秒前
1秒前
子星发布了新的文献求助30
1秒前
Jasper应助坦率锦程采纳,获得10
1秒前
FashionBoy应助自由的鱼采纳,获得10
3秒前
able完成签到,获得积分10
4秒前
Menta1y完成签到,获得积分10
4秒前
5秒前
7秒前
冷酷莫言发布了新的文献求助10
9秒前
10秒前
五十完成签到,获得积分10
10秒前
脑洞疼应助刘强采纳,获得10
11秒前
风清扬发布了新的文献求助10
12秒前
12秒前
阿航完成签到,获得积分10
13秒前
朱红艳完成签到 ,获得积分10
13秒前
害羞便当完成签到,获得积分10
14秒前
15秒前
15秒前
画画的baby发布了新的文献求助10
16秒前
16秒前
英俊的铭应助笑ige采纳,获得10
17秒前
sxhdxwf完成签到,获得积分10
17秒前
17秒前
鸿来完成签到,获得积分10
18秒前
19秒前
布尔克的幸运壶穴完成签到,获得积分10
20秒前
lvoov完成签到 ,获得积分10
20秒前
20秒前
CodeCraft应助小杏仁采纳,获得10
21秒前
自由的鱼发布了新的文献求助10
21秒前
22秒前
听话的富发布了新的文献求助10
22秒前
22秒前
怕麻烦的人完成签到,获得积分10
22秒前
华仔应助N多个采纳,获得10
22秒前
cherry发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288471
求助须知:如何正确求助?哪些是违规求助? 4440345
关于积分的说明 13824326
捐赠科研通 4322585
什么是DOI,文献DOI怎么找? 2372663
邀请新用户注册赠送积分活动 1368105
关于科研通互助平台的介绍 1331949