侧链
材料科学
丙烯酸酯
化学工程
电解质
离子电导率
聚合物
共聚物
三元运算
高分子化学
离子键合
六氟丙烯
电化学
离子
化学
复合材料
有机化学
电极
物理化学
计算机科学
工程类
程序设计语言
四氟乙烯
作者
Hongfei Xu,Jinlin Yang,Yuxiang Niu,Xunan Hou,Zejun Sun,Chonglai Jiang,Yukun Xiao,Chaobin He,Shubin Yang,Bin Li,Wei Chen
标识
DOI:10.1002/anie.202406637
摘要
A critical challenge in solid polymer lithium batteries is developing a polymer matrix that can harmonize ionic transportation, electrochemical stability, and mechanical durability. We introduce a novel polymer matrix design by deciphering the structure‐function relationships of polymer side chains. Leveraging the molecular orbital‐polarity‐spatial freedom design strategy, a high ion‐conductive hyperelastic ternary copolymer electrolyte (CPE) is synthesized, incorporating three functionalized side chains of poly‐2,2,2‐Trifluoroethyl acrylate (PTFEA), poly(vinylene carbonate) (PVC), and polyethylene glycol monomethyl ether acrylate (PEGMEA). It is revealed that fluorine‐rich side chain (PTFEA) contributes to improved stability and interfacial compatibility; the highly polar side chain (PVC) facilitates the efficient dissociation and migration of ions; the flexible side chain (PEGMEA) with high spatial freedom promotes segmental motion and interchain ion exchanges. The resulting CPE demonstrates an ionic conductivity of 2.19 × 10‐3 S cm‐1 (30 °C), oxidation resistance voltage of 4.97 V, excellent elasticity (2700%), and non‐flammability. The outer elastic CPE and the inner organic‐inorganic hybrid SEI buffer intense volume fluctuation and enable uniform Li+ deposition. As a result, symmetric Li cells realize a high CCD of 2.55 mA cm‐2 and the CPE‐based Li||NCM811 full cell exhibits a high‐capacity retention (~90%, 0.5 C) after 200 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI