Machine learning proteochemometric models for Cereblon glue activity predictions

胶水 小脑 计算机科学 工程类 生物 机械工程 遗传学 泛素连接酶 泛素 基因
作者
Francis J. Prael,John R. Cox,Noé Sturm,Peter S. Kutchukian,William C. Forrester,Gregory A Michaud,Jutta Blank,Lingling Shen,Raquel Rodríguez-Pérez
出处
期刊:Artificial intelligence in the life sciences [Elsevier]
卷期号:6: 100100-100100
标识
DOI:10.1016/j.ailsci.2024.100100
摘要

Targeted protein degradation (TPD) is a rapidly developing drug discovery technique with unique efficacy and target scope stemming from its degradation-based activity. Molecular glue degraders are a promising arm of TPD, as evidenced by the FDA-approved therapeutics within this class, the increasing number of degraders in clinical development, and their predisposition to drug-likeness. Cereblon (CRBN) glue degraders mediate target degradation by generating a neomorphic interface between CRBN and a protein of interest. While promising, the complicated nature of this CRBN-glue-target ternary complex makes the rational design of molecular glue degraders challenging. For other drug modalities, predictive modeling has been established to leverage existing activity data and generate quantitative structure-activity relationships (QSAR). However, the applicability of QSAR strategies for glues remains under-investigated. Herein, machine learning methodologies were developed to predict glue-mediated recruitment of CRBN to target proteins and achieved promising performance. Generated models leveraged more than a hundred internal screening campaigns across thousands of CRBN glues to predict glue-mediated recruitment of targets to CRBN. Our results show that recruitment activity of CRBN glue degraders can be modeled by machine learning, with 89 % of models producing an area under the receiver operating characteristic curve (ROC AUC) > 0.8 and 70 % of models producing a Matthew's correlation coefficient (MCC) > 0.2 for these primary screening data. Importantly, our findings also indicate that the combination of compound and protein descriptors in the so-called proteochemometric models improves performance, with >80 % of the models exhibiting higher ROC AUC and MCC values than per-target models only based on compound information. Hence, our investigations suggest that proteochemometric modeling is a successful approach for molecular glue degraders. The proposed machine learning strategies can aid compound prioritization based on recruitment efficacy and target selectivity, thus have the potential to facilitate the design and discovery of therapeutic CRBN molecular glues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助小玉采纳,获得10
2秒前
xiaosi完成签到 ,获得积分10
4秒前
寒冷豆芽完成签到 ,获得积分10
5秒前
张张关注了科研通微信公众号
6秒前
无敌W完成签到,获得积分10
7秒前
7秒前
大模型应助刘枫其采纳,获得10
8秒前
娇娇完成签到 ,获得积分10
10秒前
11秒前
12秒前
Hello应助十九岁的时差采纳,获得10
15秒前
腼腆的梦蕊完成签到 ,获得积分10
15秒前
545发布了新的文献求助10
16秒前
16秒前
张张发布了新的文献求助10
16秒前
盖小包完成签到 ,获得积分10
17秒前
小玉发布了新的文献求助10
20秒前
负责的方盒完成签到 ,获得积分10
21秒前
李健应助葡萄酒采纳,获得10
27秒前
所所应助忆茶戏采纳,获得10
27秒前
27秒前
molo完成签到,获得积分10
28秒前
ykm完成签到,获得积分20
32秒前
32秒前
falling_learning完成签到 ,获得积分10
33秒前
33秒前
氨气完成签到 ,获得积分0
34秒前
34秒前
shuineng7发布了新的文献求助20
37秒前
瞿选葵发布了新的文献求助10
37秒前
美满雁芙完成签到 ,获得积分10
38秒前
ykm发布了新的文献求助10
40秒前
QCL发布了新的文献求助10
40秒前
44秒前
47秒前
shuineng7完成签到,获得积分10
48秒前
49秒前
烟花应助NatalyaF采纳,获得10
50秒前
共享精神应助寒月采纳,获得10
52秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724