Machine learning proteochemometric models for Cereblon glue activity predictions

胶水 小脑 计算机科学 工程类 生物 机械工程 遗传学 泛素 基因 泛素连接酶
作者
Francis J. Prael,John R. Cox,Noé Sturm,Peter S. Kutchukian,William C. Forrester,Gregory A Michaud,Jutta Blank,Lingling Shen,Raquel Rodríguez-Pérez
出处
期刊:Artificial intelligence in the life sciences [Elsevier]
卷期号:6: 100100-100100
标识
DOI:10.1016/j.ailsci.2024.100100
摘要

Targeted protein degradation (TPD) is a rapidly developing drug discovery technique with unique efficacy and target scope stemming from its degradation-based activity. Molecular glue degraders are a promising arm of TPD, as evidenced by the FDA-approved therapeutics within this class, the increasing number of degraders in clinical development, and their predisposition to drug-likeness. Cereblon (CRBN) glue degraders mediate target degradation by generating a neomorphic interface between CRBN and a protein of interest. While promising, the complicated nature of this CRBN-glue-target ternary complex makes the rational design of molecular glue degraders challenging. For other drug modalities, predictive modeling has been established to leverage existing activity data and generate quantitative structure-activity relationships (QSAR). However, the applicability of QSAR strategies for glues remains under-investigated. Herein, machine learning methodologies were developed to predict glue-mediated recruitment of CRBN to target proteins and achieved promising performance. Generated models leveraged more than a hundred internal screening campaigns across thousands of CRBN glues to predict glue-mediated recruitment of targets to CRBN. Our results show that recruitment activity of CRBN glue degraders can be modeled by machine learning, with 89 % of models producing an area under the receiver operating characteristic curve (ROC AUC) > 0.8 and 70 % of models producing a Matthew's correlation coefficient (MCC) > 0.2 for these primary screening data. Importantly, our findings also indicate that the combination of compound and protein descriptors in the so-called proteochemometric models improves performance, with >80 % of the models exhibiting higher ROC AUC and MCC values than per-target models only based on compound information. Hence, our investigations suggest that proteochemometric modeling is a successful approach for molecular glue degraders. The proposed machine learning strategies can aid compound prioritization based on recruitment efficacy and target selectivity, thus have the potential to facilitate the design and discovery of therapeutic CRBN molecular glues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助xrb采纳,获得30
1秒前
幸福的雪枫完成签到 ,获得积分10
2秒前
TAA66完成签到,获得积分10
2秒前
852应助jitanxiang采纳,获得10
5秒前
JMao发布了新的文献求助10
5秒前
zzz关注了科研通微信公众号
6秒前
小猪啵比完成签到 ,获得积分20
6秒前
Lucky完成签到,获得积分10
7秒前
8秒前
李爱国应助阔达的凡采纳,获得10
11秒前
12秒前
12秒前
吴大宝发布了新的文献求助10
12秒前
18秒前
淡淡冬瓜完成签到,获得积分10
19秒前
ixteam完成签到,获得积分0
19秒前
阔达飞双完成签到,获得积分10
20秒前
btbt完成签到 ,获得积分20
20秒前
图图完成签到,获得积分10
21秒前
西瓜完成签到,获得积分10
22秒前
23秒前
sinlar发布了新的文献求助10
23秒前
白开水发布了新的文献求助10
24秒前
25秒前
25秒前
斯文的从彤完成签到,获得积分20
26秒前
MOON完成签到,获得积分10
26秒前
充电宝应助chen采纳,获得10
28秒前
btbt关注了科研通微信公众号
29秒前
30秒前
34秒前
qixinyi完成签到,获得积分10
35秒前
阔达的凡发布了新的文献求助10
36秒前
Frank给liian7的求助进行了留言
39秒前
105发布了新的文献求助10
41秒前
42秒前
43秒前
43秒前
sinlar完成签到,获得积分10
44秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812335
关于积分的说明 7895242
捐赠科研通 2471208
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086