Analysis of the degradation and crystallization behavior during the thermal degradation of poly(lactic acid)/modified hectorite nanocomposites films by simultaneous rheology and FTIR technology

锂长石 降级(电信) 流变学 纳米复合材料 傅里叶变换红外光谱 结晶 化学工程 材料科学 乳酸 热的 高分子化学 复合材料 地质学 蒙脱石 电信 古生物学 物理 气象学 计算机科学 细菌 工程类
作者
Yikelamu Jilili,Li Fei,Yumiao Ma,Weijun Zhen
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:270: 132403-132403 被引量:4
标识
DOI:10.1016/j.ijbiomac.2024.132403
摘要

This study presents the synthesis of Hec-g@PS through the innovative surface modification of hectorite via photocatalytic atom transfer radical polymerization (ATRP). Then, PLA/Hec-g@PS nanocomposites films was prepared with Hec-g@PS as additives by blown molding technique. Furthermore, the thermal degradation kinetics and crystallization kinetics during the thermal degradation of PLA based nanocomposites films were investigated with simultaneous rheology and FTIR technology. The findings indicated that the activation energies for PLA and PLA/Hec-g@PS were -54,702.12 J/mol and -107,963.47 J/mol, respectively, demonstrating that Hec-g@PS substantially influenced PLA thermal stability. Additionally, while the crystallization rates of PLA based films decreased with rising degradation temperatures. Quantum chemical calculations revealed that the mode of interaction between Hec-g@PS and PLA was mainly dominated by dispersion, supplemented by electrostatic and induced interactions of -22.2103 kcal/mol, -16.0779 kcal/mol and -5.4954 kcal/mol, respectively. The combination of crystallization kinetics and quantum chemical calculations further confirmed that Hec-g@PS promoted the alignment of PLA molecular chains due to the enhanced interaction force between them. Hec-g@PS functioned as a nucleating agent, facilitating PLA crystallization and effectively mitigated its thermal degradation. Hec-g@PS as a nucleating agent provides valuable insights into the potential application prospects of biodegradable materials, particularly in the fields of biomedicine and packaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MQueen完成签到,获得积分10
1秒前
morlison完成签到,获得积分10
1秒前
儒雅致远发布了新的文献求助10
1秒前
向锋完成签到,获得积分20
2秒前
Yanis完成签到,获得积分10
2秒前
立冬完成签到,获得积分10
2秒前
白辞完成签到,获得积分10
3秒前
Liu_cx完成签到,获得积分10
3秒前
sunianjinshi完成签到,获得积分10
4秒前
LYQ15237208950完成签到 ,获得积分10
4秒前
ze完成签到,获得积分10
4秒前
5秒前
5秒前
Jiale完成签到,获得积分20
5秒前
东北三省完成签到,获得积分10
6秒前
6秒前
6秒前
核潜艇很优秀应助888采纳,获得10
6秒前
7秒前
李景明完成签到,获得积分10
7秒前
7秒前
苗元槐完成签到 ,获得积分10
8秒前
王小茗完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
cathyliu完成签到,获得积分10
9秒前
故事细腻完成签到 ,获得积分10
9秒前
9秒前
超级苹果完成签到 ,获得积分10
10秒前
公冶扬发布了新的文献求助10
10秒前
大头发布了新的文献求助10
10秒前
76542cu发布了新的文献求助10
11秒前
wuxiao发布了新的文献求助10
11秒前
噜噜噜噜噜完成签到,获得积分10
11秒前
11秒前
zgl0806完成签到,获得积分10
11秒前
oy发布了新的文献求助10
11秒前
紧张的金毛完成签到,获得积分10
12秒前
科研小白菜完成签到,获得积分10
12秒前
yx完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651771
求助须知:如何正确求助?哪些是违规求助? 4785921
关于积分的说明 15056130
捐赠科研通 4810446
什么是DOI,文献DOI怎么找? 2573185
邀请新用户注册赠送积分活动 1529071
关于科研通互助平台的介绍 1488014