Analysis of the degradation and crystallization behavior during the thermal degradation of poly(lactic acid)/modified hectorite nanocomposites films by simultaneous rheology and FTIR technology

锂长石 降级(电信) 流变学 纳米复合材料 傅里叶变换红外光谱 结晶 化学工程 材料科学 乳酸 热的 高分子化学 复合材料 地质学 蒙脱石 电信 古生物学 物理 气象学 计算机科学 细菌 工程类
作者
Yikelamu Jilili,Li Fei,Yumiao Ma,Weijun Zhen
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:270: 132403-132403 被引量:4
标识
DOI:10.1016/j.ijbiomac.2024.132403
摘要

This study presents the synthesis of Hec-g@PS through the innovative surface modification of hectorite via photocatalytic atom transfer radical polymerization (ATRP). Then, PLA/Hec-g@PS nanocomposites films was prepared with Hec-g@PS as additives by blown molding technique. Furthermore, the thermal degradation kinetics and crystallization kinetics during the thermal degradation of PLA based nanocomposites films were investigated with simultaneous rheology and FTIR technology. The findings indicated that the activation energies for PLA and PLA/Hec-g@PS were -54,702.12 J/mol and -107,963.47 J/mol, respectively, demonstrating that Hec-g@PS substantially influenced PLA thermal stability. Additionally, while the crystallization rates of PLA based films decreased with rising degradation temperatures. Quantum chemical calculations revealed that the mode of interaction between Hec-g@PS and PLA was mainly dominated by dispersion, supplemented by electrostatic and induced interactions of -22.2103 kcal/mol, -16.0779 kcal/mol and -5.4954 kcal/mol, respectively. The combination of crystallization kinetics and quantum chemical calculations further confirmed that Hec-g@PS promoted the alignment of PLA molecular chains due to the enhanced interaction force between them. Hec-g@PS functioned as a nucleating agent, facilitating PLA crystallization and effectively mitigated its thermal degradation. Hec-g@PS as a nucleating agent provides valuable insights into the potential application prospects of biodegradable materials, particularly in the fields of biomedicine and packaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WQ完成签到,获得积分10
刚刚
早点睡觉完成签到,获得积分20
刚刚
531完成签到,获得积分10
刚刚
SUMING完成签到 ,获得积分10
刚刚
短短完成签到,获得积分10
刚刚
刚刚
1秒前
godccc完成签到,获得积分10
1秒前
鲈鱼发布了新的文献求助10
1秒前
2秒前
在水一方应助新一采纳,获得10
3秒前
美满忆文发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
xxb发布了新的文献求助10
4秒前
5秒前
5秒前
一二三完成签到,获得积分20
5秒前
嘻嘻哈哈应助veggieg采纳,获得20
6秒前
粗犷的沛容应助veggieg采纳,获得50
6秒前
大个应助veggieg采纳,获得10
6秒前
嘻嘻哈哈应助veggieg采纳,获得20
6秒前
无花果应助veggieg采纳,获得10
6秒前
6秒前
CodeCraft应助veggieg采纳,获得10
6秒前
6秒前
慕青应助veggieg采纳,获得10
6秒前
粗犷的沛容应助veggieg采纳,获得50
6秒前
科研通AI6应助echo采纳,获得10
7秒前
浮游应助研友_ZA7B7L采纳,获得10
7秒前
7秒前
小帅发布了新的文献求助10
7秒前
哈哈哈哈完成签到,获得积分10
8秒前
viauue9完成签到,获得积分10
8秒前
dynamoo应助YUJIALING采纳,获得10
8秒前
YYY发布了新的文献求助10
9秒前
乘风完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812