Geographic heterogeneity of activation functions in urban real-time flood forecasting: Based on seasonal trend decomposition using Loess-Temporal Convolutional Network-Gated Recurrent Unit model

平均绝对百分比误差 均方误差 统计 大洪水 排水 平均绝对误差 计算机科学 气象学 环境科学 水文学(农业) 数学 地理 地质学 生态学 岩土工程 考古 生物
作者
Songhua Huan
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:636: 131279-131279 被引量:1
标识
DOI:10.1016/j.jhydrol.2024.131279
摘要

Urban real-time flood forecasting is crucial for flood prevention and sustainable development, but it poses challenges due to data inputs and activation functions selection in data-driven models without sufficient focus of geographic heterogeneity. In this study, a novel Seasonal Trend Decomposition using Loess (STL)-Temporal Convolutional Network (TCN)-Gated Recurrent Unit (GRU) model is proposed to improve urban real-time flood forecasting accuracy, twenty-one different activation functions are considered for geographic heterogeneity. Experiments are conducted at six urban drainage system locations in Odense, Denmark. The results show that: (1) STL effectively prepares data for forecasting using TCN and GRU models, leading improved performance compared to single models. STL-TCN-GRU deep learning model demonstrates strong applicability in urban forecasting, achieving an overall accuracy of 0.0079, 0.0140, 0.0482 and 0.9581 in Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Nash-Sutcliffe efficiency coefficient (NSE), respectively. (2) Softsign emerges as the best activation function for forecasting in lower drainage system locations, with average accuracy of 0.0094, 0.0018, 0.0049 and 0.9938 in MAE, RMSE, MAPE and NSE, respectively. Furthermore, Softsign proves to be the best activation function for forecasting in middle drainage system locations, with average accuracy of 0.0047, 0.0081, 0.0309 and 0.9547 in MAE, RMSE, MAPE and NSE, respectively. Swish is the best activation function for forecasting in upper drainage system locations, with average accuracy of 0.0052, 0.0080, 0.0627 and 0.9060 in MAE, RMSE, MAPE and NSE, respectively. This study provides valuable insights for urban real-time flood forecasting modeling with high accuracy and evidence for activation function selection in data-driven models like STL-TCN-GRU for geographic heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
该睡觉啦发布了新的文献求助20
1秒前
陈梦雨完成签到 ,获得积分10
2秒前
gg完成签到,获得积分10
2秒前
瞬间完成签到 ,获得积分10
2秒前
Hello paper完成签到,获得积分10
3秒前
3秒前
demonox完成签到,获得积分10
3秒前
乐乐应助奔奔采纳,获得10
4秒前
6秒前
6秒前
科研通AI5应助SCI采纳,获得10
6秒前
科研通AI5应助hobowei采纳,获得10
9秒前
可爱奇异果完成签到 ,获得积分10
9秒前
wang发布了新的文献求助10
10秒前
太空人完成签到,获得积分10
10秒前
123发布了新的文献求助10
11秒前
12秒前
该睡觉啦完成签到,获得积分20
12秒前
12秒前
莫x莫完成签到 ,获得积分10
14秒前
loewy完成签到,获得积分10
14秒前
黄婷发布了新的文献求助10
14秒前
14秒前
yuan完成签到,获得积分10
14秒前
zho发布了新的文献求助10
14秒前
14秒前
苏苏完成签到,获得积分10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得80
15秒前
Hello应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
万能图书馆应助内向秋寒采纳,获得10
15秒前
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794