Geographic heterogeneity of activation functions in urban real-time flood forecasting: Based on seasonal trend decomposition using Loess-Temporal Convolutional Network-Gated Recurrent Unit model

平均绝对百分比误差 均方误差 统计 大洪水 排水 平均绝对误差 计算机科学 气象学 环境科学 水文学(农业) 数学 地理 地质学 生态学 岩土工程 考古 生物
作者
Songhua Huan
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:636: 131279-131279 被引量:1
标识
DOI:10.1016/j.jhydrol.2024.131279
摘要

Urban real-time flood forecasting is crucial for flood prevention and sustainable development, but it poses challenges due to data inputs and activation functions selection in data-driven models without sufficient focus of geographic heterogeneity. In this study, a novel Seasonal Trend Decomposition using Loess (STL)-Temporal Convolutional Network (TCN)-Gated Recurrent Unit (GRU) model is proposed to improve urban real-time flood forecasting accuracy, twenty-one different activation functions are considered for geographic heterogeneity. Experiments are conducted at six urban drainage system locations in Odense, Denmark. The results show that: (1) STL effectively prepares data for forecasting using TCN and GRU models, leading improved performance compared to single models. STL-TCN-GRU deep learning model demonstrates strong applicability in urban forecasting, achieving an overall accuracy of 0.0079, 0.0140, 0.0482 and 0.9581 in Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Nash-Sutcliffe efficiency coefficient (NSE), respectively. (2) Softsign emerges as the best activation function for forecasting in lower drainage system locations, with average accuracy of 0.0094, 0.0018, 0.0049 and 0.9938 in MAE, RMSE, MAPE and NSE, respectively. Furthermore, Softsign proves to be the best activation function for forecasting in middle drainage system locations, with average accuracy of 0.0047, 0.0081, 0.0309 and 0.9547 in MAE, RMSE, MAPE and NSE, respectively. Swish is the best activation function for forecasting in upper drainage system locations, with average accuracy of 0.0052, 0.0080, 0.0627 and 0.9060 in MAE, RMSE, MAPE and NSE, respectively. This study provides valuable insights for urban real-time flood forecasting modeling with high accuracy and evidence for activation function selection in data-driven models like STL-TCN-GRU for geographic heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yingying发布了新的文献求助10
1秒前
可爱的函函应助香蕉静芙采纳,获得10
2秒前
张浩发布了新的文献求助10
2秒前
3秒前
fei发布了新的文献求助150
3秒前
4秒前
4秒前
5秒前
依灵完成签到,获得积分10
5秒前
5秒前
充电宝应助mariawang采纳,获得10
6秒前
王哈哈关注了科研通微信公众号
7秒前
kkdkg发布了新的文献求助10
7秒前
时笙发布了新的文献求助10
7秒前
苏利文完成签到,获得积分10
8秒前
8秒前
小二郎应助尔尔采纳,获得30
8秒前
9秒前
小丑鱼儿发布了新的文献求助10
9秒前
10秒前
Rubby应助Sissi采纳,获得10
10秒前
11秒前
隐形夕阳发布了新的文献求助50
12秒前
搞学术的发布了新的文献求助10
12秒前
Freddie发布了新的文献求助10
14秒前
淡淡梦容发布了新的文献求助10
14秒前
14秒前
mmol发布了新的文献求助10
15秒前
可靠的冰烟完成签到,获得积分10
15秒前
Ava应助kkdkg采纳,获得10
16秒前
Bio应助AA简单男孩采纳,获得26
17秒前
搜集达人应助虚幻靖易采纳,获得10
17秒前
Notdodead应助yyds采纳,获得10
17秒前
科研通AI2S应助Lu采纳,获得10
17秒前
18秒前
18秒前
搞怪的人龙完成签到,获得积分10
19秒前
淡淡梦容完成签到,获得积分10
19秒前
情怀应助star采纳,获得10
20秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021