Geographic heterogeneity of activation functions in urban real-time flood forecasting: Based on seasonal trend decomposition using Loess-Temporal Convolutional Network-Gated Recurrent Unit model

平均绝对百分比误差 均方误差 统计 大洪水 排水 平均绝对误差 计算机科学 气象学 环境科学 水文学(农业) 数学 地理 地质学 生态学 岩土工程 考古 生物
作者
Songhua Huan
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:636: 131279-131279 被引量:1
标识
DOI:10.1016/j.jhydrol.2024.131279
摘要

Urban real-time flood forecasting is crucial for flood prevention and sustainable development, but it poses challenges due to data inputs and activation functions selection in data-driven models without sufficient focus of geographic heterogeneity. In this study, a novel Seasonal Trend Decomposition using Loess (STL)-Temporal Convolutional Network (TCN)-Gated Recurrent Unit (GRU) model is proposed to improve urban real-time flood forecasting accuracy, twenty-one different activation functions are considered for geographic heterogeneity. Experiments are conducted at six urban drainage system locations in Odense, Denmark. The results show that: (1) STL effectively prepares data for forecasting using TCN and GRU models, leading improved performance compared to single models. STL-TCN-GRU deep learning model demonstrates strong applicability in urban forecasting, achieving an overall accuracy of 0.0079, 0.0140, 0.0482 and 0.9581 in Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Nash-Sutcliffe efficiency coefficient (NSE), respectively. (2) Softsign emerges as the best activation function for forecasting in lower drainage system locations, with average accuracy of 0.0094, 0.0018, 0.0049 and 0.9938 in MAE, RMSE, MAPE and NSE, respectively. Furthermore, Softsign proves to be the best activation function for forecasting in middle drainage system locations, with average accuracy of 0.0047, 0.0081, 0.0309 and 0.9547 in MAE, RMSE, MAPE and NSE, respectively. Swish is the best activation function for forecasting in upper drainage system locations, with average accuracy of 0.0052, 0.0080, 0.0627 and 0.9060 in MAE, RMSE, MAPE and NSE, respectively. This study provides valuable insights for urban real-time flood forecasting modeling with high accuracy and evidence for activation function selection in data-driven models like STL-TCN-GRU for geographic heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nightmare发布了新的文献求助10
刚刚
Lili发布了新的文献求助10
1秒前
kingwill应助南韵采纳,获得20
2秒前
4秒前
Poik完成签到,获得积分10
4秒前
刘娅铷发布了新的文献求助10
4秒前
6秒前
小小吴完成签到,获得积分10
7秒前
不孤独的发卡完成签到,获得积分20
7秒前
潘善若发布了新的文献求助30
10秒前
zzzjh完成签到,获得积分10
10秒前
香蕉觅云应助超级采纳,获得10
12秒前
12秒前
安然完成签到 ,获得积分10
17秒前
桔子完成签到,获得积分10
17秒前
17秒前
落后的哈密瓜完成签到,获得积分10
18秒前
潘善若发布了新的文献求助10
19秒前
Rainbow完成签到 ,获得积分10
20秒前
22秒前
SciGPT应助momo采纳,获得10
22秒前
22秒前
Lili完成签到,获得积分10
23秒前
23秒前
24秒前
congyjs完成签到,获得积分20
26秒前
超级发布了新的文献求助10
27秒前
27秒前
潘善若发布了新的文献求助10
28秒前
Rondab应助胡图图采纳,获得10
28秒前
28秒前
30秒前
nilu完成签到,获得积分10
30秒前
congyjs发布了新的文献求助10
31秒前
32秒前
CodeCraft应助落后的哈密瓜采纳,获得10
32秒前
32秒前
王汉韬发布了新的文献求助10
33秒前
Nature_Science完成签到,获得积分10
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158