Iterative distributed model predictive control for heterogeneous systems with non-convex coupled constraints

模型预测控制 正多边形 控制理论(社会学) 计算机科学 凸优化 数学优化 控制(管理) 数学 人工智能 几何学
作者
Jinxian Wu,Li Dai,Yuanqing Xia
出处
期刊:Automatica [Elsevier]
卷期号:166: 111700-111700
标识
DOI:10.1016/j.automatica.2024.111700
摘要

This paper investigates the distributed model predictive control (DMPC) problem for multiple dynamically-decoupled heterogeneous linear systems subject to both local state and input constraints and coupled non-convex constraints (e.g., collision avoidance constraints). To solve the resulting non-convex optimal control problem (OCP) at each time step, successive convex approximation (SCA) technique is a promising convexification approach. However, an algorithm that is fully distributed, computationally efficient, and recursively feasible for both local and coupled non-convex constraints remains an open problem. In this paper, we propose an inner–outer layer framework that integrates three important modifications into the SCA scheme for solving each OCP. Specifically, (i) in the inner layer, we utilize a distributed dual fast gradient approach to enable the distributed execution, (ii) as for the outer layer, instead of requiring the optimal solution at each iteration by classical SCA scheme, we improve computational efficiency by relying solely on a suboptimal solution achieved through flexible termination, and (iii) an adaptive tightening strategy imposing on the convexified coupled constraints is developed which permits both the inner and outer layers to terminate in advance with the guarantee of the closed-loop non-convex coupled constraints satisfaction. Under some reasonable assumptions, convergence of the proposed inner–outer layer framework, recursive feasibility of the proposed DMPC algorithm and stability of the resulting whole closed-loop system are ensured. Simulation results on multi-agent control with non-convex coupled collision avoidance constraints and comparisons against some benchmark solutions using the centralized method are carried out to verify the performance of the proposed DMPC method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哲别发布了新的文献求助10
刚刚
1秒前
上官若男应助Return采纳,获得10
1秒前
jeremyher完成签到,获得积分10
1秒前
光暗影发布了新的文献求助10
1秒前
2秒前
深情安青应助shixuyuan采纳,获得10
2秒前
王安琪发布了新的文献求助10
2秒前
3秒前
3秒前
123发布了新的文献求助10
3秒前
天天快乐应助hanleiharry1采纳,获得10
4秒前
典希子完成签到,获得积分10
5秒前
顺心的南蕾完成签到,获得积分10
5秒前
jovrtic发布了新的文献求助10
5秒前
5秒前
无极微光应助东方元语采纳,获得20
6秒前
yangyangyang完成签到,获得积分0
6秒前
里朵发布了新的文献求助10
6秒前
斯文绿凝发布了新的文献求助30
8秒前
李爱国应助彪壮的含玉采纳,获得10
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
漂亮画板完成签到 ,获得积分10
11秒前
孙成伟完成签到,获得积分10
12秒前
大个应助包容草莓采纳,获得10
12秒前
F7erxl发布了新的文献求助10
13秒前
小二郎应助徐晚疯采纳,获得20
13秒前
14秒前
77发布了新的文献求助10
14秒前
14秒前
14秒前
CodeCraft应助再见不难采纳,获得10
14秒前
16秒前
llll完成签到,获得积分20
16秒前
digger2023发布了新的文献求助10
16秒前
hanleiharry1发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649603
求助须知:如何正确求助?哪些是违规求助? 4778715
关于积分的说明 15049374
捐赠科研通 4808630
什么是DOI,文献DOI怎么找? 2571661
邀请新用户注册赠送积分活动 1528083
关于科研通互助平台的介绍 1486851