Data-driven learning algorithm to predict full-field aerodynamics of large structures subject to crosswinds

物理 空气动力学 侧风 领域(数学) 航空航天工程 计算流体力学 算法 统计物理学 机械 气象学 计算机科学 数学 纯数学 工程类
作者
Xianjia Chen,Bo Yin,Zheng Yuan,Guowei Yang,Qiang Li,Shouguang Sun,Yujie Wei
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (5)
标识
DOI:10.1063/5.0197178
摘要

Quick and high-fidelity updates about aerodynamic loads of large-scale structures, from trains, planes, and automobiles to many civil infrastructures, serving under the influence of a broad range of crosswinds are of practical significance for their design and in-use safety assessment. Herein, we demonstrate that data-driven machine learning (ML) modeling, in combination with conventional computational methods, can fulfill the goal of fast yet faithful aerodynamic prediction for moving objects subject to crosswinds. Taking a full-scale high-speed train, we illustrate that our data-driven model, trained with a small amount of data from simulations, can readily predict with high fidelity pressure and viscous stress distributions on the train surface in a wide span of operating speed and crosswind velocity. By exploring the dependence of aerodynamic coefficients on yaw angles from ML-based predictions, a rapid update of aerodynamic forces is realized, which can be effectively generalized to trains operating at higher speed levels and subject to harsher crosswinds. The method introduced here paves the way for high-fidelity yet efficient predictions to capture the aerodynamics of engineering structures and facilitates their safety assessment with enormous economic and social significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助虚心的芹采纳,获得10
1秒前
未何发布了新的文献求助10
1秒前
pluto应助虚心的芹采纳,获得10
1秒前
研友_VZG7GZ应助虚心的芹采纳,获得30
1秒前
1秒前
galaxy完成签到,获得积分20
1秒前
紧张的梦岚完成签到,获得积分10
2秒前
无心的诗柳完成签到,获得积分10
2秒前
朴实妙菱发布了新的文献求助10
2秒前
猪猪hero发布了新的文献求助10
2秒前
任性采梦发布了新的文献求助30
3秒前
3秒前
完美世界应助wenbo采纳,获得10
3秒前
gao发布了新的文献求助10
3秒前
4秒前
4秒前
丘比特应助elena采纳,获得10
4秒前
5秒前
6秒前
6秒前
英姑应助outman采纳,获得10
7秒前
7秒前
8秒前
甜甜斓完成签到 ,获得积分10
8秒前
Orange应助卢雨生采纳,获得10
9秒前
9秒前
吐个泡泡发布了新的文献求助10
10秒前
三六九发布了新的文献求助10
10秒前
王王发布了新的文献求助10
10秒前
orixero应助正直的伯云采纳,获得10
10秒前
乐乐应助M20小陈采纳,获得10
11秒前
yuyirui发布了新的文献求助10
11秒前
11秒前
11秒前
DLL完成签到 ,获得积分10
12秒前
13秒前
田様应助许阳采纳,获得10
14秒前
zy3637发布了新的文献求助30
14秒前
15秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306