废气
上部结构
群岛
废气再循环
还原(数学)
环境科学
天然气田
废物管理
领域(数学)
环境工程
天然气
工程类
地质学
海洋学
几何学
数学
结构工程
纯数学
作者
Vibianti Dwi Pratiwi,Renanto Handogo,Rendra Panca Anugraha,Juwari Purwo Sutikno,Rizal Arifin
标识
DOI:10.1080/00986445.2024.2356829
摘要
Industrial exhaust gases and gas fields are two significant sources of carbon dioxide (CO2) emissions that contribute to the rising levels of CO2 in the atmosphere. Among the various emission reduction systems, the CCSU (Carbon Capture, Storage, and Utilization) system has garnered extensive attention and research. This research aims to obtain the superstructure network sequentially in the CCSU system using GAMS (General Algebraic Modeling System). A mathematical approach was developed to optimize the amount of CO2 stored and utilized by varying the time difference (dt) between the source and sink from 0 to 10 years. After calculating the economic potential (EP), it was found that the Carbon Capture and Storage (CCS) system for both sources has a negative impact. In contrast, the CCSU system enhances the economic potential (EP) by generating a positive value. This is possible as the captured CO2 can be sold to the utilization sink, thereby creating a revenue stream. The EP for CO2 reduction from gas fields is greater than that from the industry, 21.68 × 106 USD compared to 12.50 × 106 USD at dt min10 years. The CCSU system, when utilizing CO2 sources from gas fields, is more profitable compared to using industrial emissions.
科研通智能强力驱动
Strongly Powered by AbleSci AI