MECOM: A Meta-Completion Network for Fine-Grained Recognition with Incomplete Multi-Modalities

计算机科学 人工智能 杠杆(统计) 模态(人机交互) 模式 判别式 机器学习 缺少数据 条件随机场 模式识别(心理学) 社会科学 社会学
作者
Xiu-Shen Wei,Hongtao Yu,Anqi Xu,Faen Zhang,Yuxin Peng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3456-3469
标识
DOI:10.1109/tip.2024.3403051
摘要

Our work focuses on tackling the problem of fine-grained recognition with incomplete multi-modal data, which is overlooked by previous work in the literature. It is desirable to not only capture fine-grained patterns of objects but also alleviate the challenges of missing modalities for such a practical problem. In this paper, we propose to leverage a meta-learning strategy to learn model abilities of both fast modal adaptation and more importantly missing modality completion across a variety of incomplete multi-modality learning tasks. Based on that, we develop a meta-completion method, termed as MECOM, to perform multimodal fusion and explicit missing modality completion by our proposals of cross-modal attention and decoupling reconstruction. To further improve fine-grained recognition accuracy, an additional partial stream (as a counterpart of the main stream of MECOM, i.e., holistic) and the part-level features (corresponding to fine-grained objects' parts) selection are designed, which are tailored for fine-grained nature to capture discriminative but subtle part-level patterns. Comprehensive experiments from quantitative and qualitative aspects, as well as various ablation studies, on two fine-grained multimodal datasets and one generic multimodal dataset show our superiority over competing methods. Our code is open-source and available at https://github.com/SEU-VIPGroup/MECOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuliumei发布了新的文献求助30
刚刚
zhouzhou完成签到,获得积分10
刚刚
sure发布了新的文献求助10
刚刚
上官若男应助Hu111采纳,获得10
1秒前
务实的紫伊完成签到,获得积分10
1秒前
春风得意完成签到,获得积分10
1秒前
爱你呃不可能完成签到,获得积分10
1秒前
WSY完成签到,获得积分20
1秒前
666星爷留下了新的社区评论
2秒前
风吹似夏完成签到,获得积分10
2秒前
2秒前
李健应助crr采纳,获得10
2秒前
tao完成签到,获得积分20
3秒前
淡淡的雪完成签到,获得积分10
3秒前
3秒前
3秒前
yitang发布了新的文献求助10
4秒前
涛浪发布了新的文献求助10
4秒前
5秒前
5秒前
乔治韦斯莱完成签到 ,获得积分10
6秒前
Jenny应助圈圈采纳,获得10
6秒前
6秒前
呆萌完成签到 ,获得积分10
6秒前
啾啾完成签到,获得积分10
6秒前
脑洞疼应助hhy采纳,获得10
7秒前
Zhong发布了新的文献求助10
9秒前
9秒前
神仙也抠脚丫完成签到,获得积分10
9秒前
9秒前
10秒前
岩中花树完成签到,获得积分10
10秒前
10秒前
科研小白完成签到,获得积分10
11秒前
11秒前
追梦发布了新的文献求助10
11秒前
11秒前
豆包完成签到,获得积分10
11秒前
怕孤单的耳机完成签到,获得积分10
11秒前
成就梦松发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672