已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A strong anti-noise and easily deployable bearing fault diagnosis model based on time–frequency dual-channel Transformer

变压器 电子工程 方位(导航) 噪音(视频) 声学 对偶(语法数字) 频道(广播) 断层(地质) 工程类 电气工程 计算机科学 物理 电压 地质学 地震学 人工智能 艺术 文学类 图像(数学)
作者
Zhao Xu,Zhiyang Jia,YiWei Wei,Shuyan Zhang,Zhong Jin,Wenpei Dong
出处
期刊:Measurement [Elsevier]
卷期号:236: 115054-115054 被引量:5
标识
DOI:10.1016/j.measurement.2024.115054
摘要

Deep learning is widely used in Bearing Fault Diagnosis (BFD). Nonetheless, practical industrial production often generates a large amount of industrial noise. These noises exhibit randomness and complexity, which puts forward higher requirements for diagnosis algorithms. Certain studies have tackled the issue of anti-interference in high-noise environments (SNR≤0dB) by increasing the complexity of the model. However, due to the excessive number of parameters and computation, such models cannot be deployed on low-end edge devices. Balancing resource consumption and accuracy has become a major challenge in BFD modeling research. To solve the above problems, this paper proposes a new Transformer architecture model called LTFAFormer. The LTFAFormer is capable of achieving high-precision diagnostics on low-end edge devices and shows greater noise resistance. In terms of processing sequence information, Transformer has proven to be superior to other solutions. However, when dealing with longer sensor signal data containing complex noise, the traditional self-attention mechanism not only cannot effectively extract fault features, but also generates more computational complexity than CNN. To address this issue, we propose a novel time-frequency dual-channel parallel attention mechanism. Our approach enhances the feature extraction capability of the model by expanding the attention computation scale and reduces the computational resource consumption of the model by optimizing the model structure. To validate the effectiveness of LTFAFormer, we present two cases to demonstrate that LTFAFormer has higher prediction accuracy while satisfying lightweight. Especially in high-noise environments, LTFAFormer has stronger robustness. In this paper provides a new set of feasible strategies for the practical deployment of BFD models in practical industrial environments. The code is available at https://github.com/XZHBUT/LTFAFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤蚀月完成签到,获得积分10
5秒前
月yue完成签到,获得积分10
10秒前
HannahLL应助Transition采纳,获得10
14秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
DamenS完成签到,获得积分10
16秒前
科目三应助瘦瘦的映秋采纳,获得10
17秒前
DamenS发布了新的文献求助10
20秒前
20秒前
22秒前
24秒前
土豪的摩托完成签到,获得积分10
24秒前
潇洒的语蝶完成签到 ,获得积分10
26秒前
隐形问萍发布了新的文献求助10
26秒前
Jack80发布了新的文献求助10
33秒前
墩墩小猪咪完成签到,获得积分10
34秒前
36秒前
37秒前
coco完成签到,获得积分10
40秒前
41秒前
木语发布了新的文献求助30
41秒前
莫离完成签到 ,获得积分10
59秒前
1分钟前
香蕉觅云应助自渡采纳,获得10
1分钟前
funnyelephant发布了新的文献求助10
1分钟前
蓝莓松饼完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
蓝莓松饼发布了新的文献求助10
1分钟前
宝宝烤面包完成签到 ,获得积分10
1分钟前
小蘑菇应助mysgmmdnz采纳,获得10
1分钟前
简单的尔风完成签到 ,获得积分10
1分钟前
Eric发布了新的文献求助10
1分钟前
大方大船完成签到,获得积分10
1分钟前
Rashalin完成签到,获得积分10
1分钟前
1分钟前
十攵发布了新的文献求助10
1分钟前
yanxueyi完成签到 ,获得积分10
1分钟前
hhhhh完成签到 ,获得积分10
1分钟前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417426
求助须知:如何正确求助?哪些是违规求助? 3019063
关于积分的说明 8886445
捐赠科研通 2706542
什么是DOI,文献DOI怎么找? 1484365
科研通“疑难数据库(出版商)”最低求助积分说明 685970
邀请新用户注册赠送积分活动 681138