亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of 3D pathology samples using weakly supervised AI

生物 数字化病理学 虚拟显微镜 组织病理学 计算机科学 人工智能 病理 医学
作者
Andrew H. Song,Mane Williams,Drew F. K. Williamson,Sarah S. L. Chow,Guillaume Jaume,Gan Gao,Andrew Zhang,Bowen Chen,Alexander S. Baras,Robert Serafin,Richard Colling,Michelle R. Downes,Xavier Farré,Peter A. Humphrey,Clare Verrill,Lawrence D. True,Anil V. Parwani,Jonathan Liu,Faisal Mahmood
出处
期刊:Cell [Cell Press]
卷期号:187 (10): 2502-2520.e17 被引量:23
标识
DOI:10.1016/j.cell.2024.03.035
摘要

Human tissue, which is inherently three-dimensional (3D), is traditionally examined through standard-of-care histopathology as limited two-dimensional (2D) cross-sections that can insufficiently represent the tissue due to sampling bias. To holistically characterize histomorphology, 3D imaging modalities have been developed, but clinical translation is hampered by complex manual evaluation and lack of computational platforms to distill clinical insights from large, high-resolution datasets. We present TriPath, a deep-learning platform for processing tissue volumes and efficiently predicting clinical outcomes based on 3D morphological features. Recurrence risk-stratification models were trained on prostate cancer specimens imaged with open-top light-sheet microscopy or microcomputed tomography. By comprehensively capturing 3D morphologies, 3D volume-based prognostication achieves superior performance to traditional 2D slice-based approaches, including clinical/histopathological baselines from six certified genitourinary pathologists. Incorporating greater tissue volume improves prognostic performance and mitigates risk prediction variability from sampling bias, further emphasizing the value of capturing larger extents of heterogeneous morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
BKP发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
21秒前
23秒前
BKP完成签到,获得积分10
23秒前
29秒前
31秒前
32秒前
Emily发布了新的文献求助10
35秒前
HeWang发布了新的文献求助10
38秒前
量子星尘发布了新的文献求助10
42秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
棣棣完成签到,获得积分10
1分钟前
1分钟前
还单身的语琴完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
xtheuv发布了新的文献求助10
1分钟前
2分钟前
xtheuv完成签到,获得积分20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
传奇3应助小怎怎采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
他也蓝发布了新的文献求助10
2分钟前
003完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743819
捐赠科研通 2931727
什么是DOI,文献DOI怎么找? 1605190
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734465