Analysis of 3D pathology samples using weakly supervised AI

生物 数字化病理学 虚拟显微镜 组织病理学 计算机科学 人工智能 病理 医学
作者
Andrew H. Song,Mane Williams,Drew F. K. Williamson,Sarah S. L. Chow,Guillaume Jaume,Gan Gao,Andrew Zhang,Bowen Chen,Alexander S. Baras,Robert Serafin,Richard Colling,Michelle R. Downes,Xavier Farré,Peter A. Humphrey,Clare Verrill,Lawrence D. True,Anil V. Parwani,Jonathan Liu,Faisal Mahmood
出处
期刊:Cell [Cell Press]
卷期号:187 (10): 2502-2520.e17 被引量:27
标识
DOI:10.1016/j.cell.2024.03.035
摘要

Human tissue, which is inherently three-dimensional (3D), is traditionally examined through standard-of-care histopathology as limited two-dimensional (2D) cross-sections that can insufficiently represent the tissue due to sampling bias. To holistically characterize histomorphology, 3D imaging modalities have been developed, but clinical translation is hampered by complex manual evaluation and lack of computational platforms to distill clinical insights from large, high-resolution datasets. We present TriPath, a deep-learning platform for processing tissue volumes and efficiently predicting clinical outcomes based on 3D morphological features. Recurrence risk-stratification models were trained on prostate cancer specimens imaged with open-top light-sheet microscopy or microcomputed tomography. By comprehensively capturing 3D morphologies, 3D volume-based prognostication achieves superior performance to traditional 2D slice-based approaches, including clinical/histopathological baselines from six certified genitourinary pathologists. Incorporating greater tissue volume improves prognostic performance and mitigates risk prediction variability from sampling bias, further emphasizing the value of capturing larger extents of heterogeneous morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助伶俐的觅海采纳,获得10
7秒前
10秒前
11秒前
郁李完成签到,获得积分10
11秒前
hujialiang完成签到,获得积分10
13秒前
我嘞个豆应助TTiger007采纳,获得10
14秒前
14秒前
gdpu_omics完成签到,获得积分20
14秒前
郑宇航发布了新的文献求助10
15秒前
17秒前
灰鸽舞发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
20秒前
23秒前
23秒前
23秒前
Ava应助科研通管家采纳,获得10
23秒前
猪猪hero应助科研通管家采纳,获得10
23秒前
猪猪hero应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
24秒前
wu8577应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
时尚战斗机应助青春采纳,获得10
24秒前
chaohuiwang发布了新的文献求助10
25秒前
狗头发布了新的文献求助10
25秒前
26秒前
高山我梦发布了新的文献求助10
27秒前
任然完成签到,获得积分10
27秒前
搬砖发布了新的文献求助10
28秒前
nanan完成签到,获得积分10
28秒前
小悟空的美好年华完成签到 ,获得积分10
30秒前
chaohuiwang完成签到,获得积分10
30秒前
冷傲凝琴发布了新的文献求助10
30秒前
齐桓公发布了新的文献求助10
32秒前
gdpu_omics发布了新的文献求助10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962523
求助须知:如何正确求助?哪些是违规求助? 3508549
关于积分的说明 11141583
捐赠科研通 3241262
什么是DOI,文献DOI怎么找? 1791486
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803474