Fault Diagnosis of Rolling Bearing based on CNN-GRU

方位(导航) 卷积神经网络 计算机科学 断层(地质) 特征提取 可靠性(半导体) 噪音(视频) 振动 状态监测 旋转(数学) 人工智能 模式识别(心理学) 可靠性工程 工程类 功率(物理) 物理 地质学 地震学 电气工程 图像(数学) 量子力学
作者
Meng Chen,Jie Zhang
标识
DOI:10.1109/aeeca59734.2023.00129
摘要

Bearings play a vital role in various rotating equipment, including motors, engines, and wind turbines. They support and enable the rotation of additional loads and are exposed to factors such as vibration, impact, and high-speed rotation during operation. Therefore, the proper functioning of bearings is essential for equipment reliability and operational efficiency. Bearing faults can lead to equipment shutdowns, noise, vibrations, and ultimately result in equipment damage or accidents. Hence, the timely and accurate diagnosis of bearing faults holds great significance. Convolutional Neural Network (CNN) models have robust feature extraction capabilities, while Gated Recurrent Unit (GRU) models demonstrate excellent classification abilities with high algorithmic efficiency. To combine the advantages of both, this study presents a fault diagnosis network model called CNN-GRU based on CNN and GRU. Ten different types of fault data under the same operating conditions are selected from a bearing fault dataset for validation. A comparison is made between the proposed CNNGRU model and traditional CNN and GRU models. The results demonstrate that this method successfully addresses the issue of traditional methods relying heavily on manually set features and shows remarkable improvements in terms of accuracy and algorithmic efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
智慧者完成签到,获得积分10
1秒前
zebra8848发布了新的文献求助10
2秒前
2秒前
2秒前
孙燕应助淳于安筠采纳,获得30
3秒前
4秒前
幸福大白发布了新的文献求助30
4秒前
wsj发布了新的文献求助10
6秒前
ZONG发布了新的文献求助20
6秒前
wuy发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
Jun关闭了Jun文献求助
10秒前
星星发布了新的文献求助10
11秒前
13秒前
射天狼发布了新的文献求助10
13秒前
13秒前
13秒前
zebra8848完成签到,获得积分10
13秒前
14秒前
深情安青应助wsj采纳,获得10
14秒前
14秒前
sxy发布了新的文献求助10
15秒前
蔡从安发布了新的文献求助10
16秒前
17秒前
柔弱云朵完成签到,获得积分10
18秒前
18秒前
18秒前
xxddw发布了新的文献求助10
18秒前
Owen应助小晓采纳,获得10
19秒前
20秒前
20秒前
20秒前
27秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
肖雪依完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174