Feature selection for multilabel classification with missing labels via multi-scale fusion fuzzy uncertainty measures

人工智能 判别式 缺少数据 计算机科学 特征选择 机器学习 特征(语言学) 模糊逻辑 模式识别(心理学) 数据挖掘 语言学 哲学
作者
Tengyu Yin,Hongmei Chen,Zhihong Wang,Keyu Liu,Zhong Yuan,Shi–Jinn Horng,Tianrui Li
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:154: 110580-110580 被引量:7
标识
DOI:10.1016/j.patcog.2024.110580
摘要

Numerous high-dimension multilabel data are generated, posing a challenge for multilabel learning. Building effective learning models with discriminative features is essential to improve the performance of multilabel learning. Multilabel feature selection can filter out the discriminative features according to their contribution to classification. However, ambiguity, uncertainty, and missing labels coexist in real-life multilabel data, which brings adverse effects to multilabel feature selection. The multi-scale fuzzy rough set gives an effective way to mine intrinsic knowledge hidden in uncertain data. This paper first extends the multi-scale learning to multilabel data with missing labels and proposes a feature selection method for multilabel classification with missing labels via multi-scale fusion fuzzy uncertainty measures called FSMML. The missing label space construction and feature evaluation metric are carefully investigated in the framework of multi-scale learning. A multilabel multi-scale learning strategy is formalized with the fuzzy granularity cognitive mechanism as the core, and the multi-scale fusion fuzzy label learning is given to reconstruct the missing label space. Then, a novel multilabel multi-scale fuzzy rough sets with missing labels is developed, and the significance of each scale is quantified. Moreover, some multi-scale fusion fuzzy uncertainty measures are defined by capturing the sample fuzzy similarity in the feature and reconstructed label spaces. Accordingly, the relevance between features and label set and the interactivity and redundancy between features in feature evaluation are discussed. Finally, FSMML chooses high-quality features to maximize relevance and interactivity and minimize redundancy. Extensive experiments demonstrate the effectiveness of FSMML on fifteen datasets with missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助晴烟ZYM采纳,获得30
1秒前
2秒前
冷静的莞完成签到 ,获得积分0
3秒前
4秒前
航迹云的彼方完成签到,获得积分10
5秒前
深情安青应助科研通管家采纳,获得10
6秒前
SHAO应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得20
6秒前
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
无花果应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
SHAO应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Hello应助科研小迷糊采纳,获得10
8秒前
8秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425