Feature selection for multilabel classification with missing labels via multi-scale fusion fuzzy uncertainty measures

人工智能 判别式 缺少数据 计算机科学 特征选择 机器学习 特征(语言学) 模糊逻辑 模式识别(心理学) 数据挖掘 语言学 哲学
作者
Tengyu Yin,Hongmei Chen,Zhihong Wang,Keyu Liu,Zhong Yuan,Shi–Jinn Horng,Tianrui Li
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:154: 110580-110580 被引量:7
标识
DOI:10.1016/j.patcog.2024.110580
摘要

Numerous high-dimension multilabel data are generated, posing a challenge for multilabel learning. Building effective learning models with discriminative features is essential to improve the performance of multilabel learning. Multilabel feature selection can filter out the discriminative features according to their contribution to classification. However, ambiguity, uncertainty, and missing labels coexist in real-life multilabel data, which brings adverse effects to multilabel feature selection. The multi-scale fuzzy rough set gives an effective way to mine intrinsic knowledge hidden in uncertain data. This paper first extends the multi-scale learning to multilabel data with missing labels and proposes a feature selection method for multilabel classification with missing labels via multi-scale fusion fuzzy uncertainty measures called FSMML. The missing label space construction and feature evaluation metric are carefully investigated in the framework of multi-scale learning. A multilabel multi-scale learning strategy is formalized with the fuzzy granularity cognitive mechanism as the core, and the multi-scale fusion fuzzy label learning is given to reconstruct the missing label space. Then, a novel multilabel multi-scale fuzzy rough sets with missing labels is developed, and the significance of each scale is quantified. Moreover, some multi-scale fusion fuzzy uncertainty measures are defined by capturing the sample fuzzy similarity in the feature and reconstructed label spaces. Accordingly, the relevance between features and label set and the interactivity and redundancy between features in feature evaluation are discussed. Finally, FSMML chooses high-quality features to maximize relevance and interactivity and minimize redundancy. Extensive experiments demonstrate the effectiveness of FSMML on fifteen datasets with missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9521完成签到,获得积分20
1秒前
1秒前
2秒前
是一个小朋友完成签到,获得积分10
2秒前
乐乐应助大梦想家采纳,获得10
2秒前
bai发布了新的文献求助30
3秒前
zhujh完成签到,获得积分10
4秒前
Akim应助佟韩采纳,获得10
4秒前
啦啦啦发布了新的文献求助10
4秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
Erislastem完成签到,获得积分10
6秒前
petrel完成签到,获得积分10
7秒前
8秒前
8秒前
bewh应助泥沼采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
chenwei完成签到,获得积分10
9秒前
10秒前
李博士完成签到,获得积分10
10秒前
无私的颤完成签到,获得积分10
10秒前
10秒前
桐桐应助易玟采纳,获得10
10秒前
小蘑菇应助退而求其次采纳,获得10
11秒前
优秀醉易完成签到,获得积分10
11秒前
wanci应助踏实的小猫咪采纳,获得10
11秒前
锦鲤发布了新的文献求助10
11秒前
郑一发布了新的文献求助10
11秒前
bewh应助可爱的山竹采纳,获得10
11秒前
WYY完成签到,获得积分10
11秒前
123发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
在水一方应助动听灵枫采纳,获得10
12秒前
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747956
求助须知:如何正确求助?哪些是违规求助? 3290798
关于积分的说明 10070954
捐赠科研通 3006696
什么是DOI,文献DOI怎么找? 1651241
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751627