Enabling Technologies for Ultra-Low Latency and High-Reliability Communication in 6G Networks

低延迟(资本市场) 可靠性(半导体) 计算机科学 电信 计算机网络 功率(物理) 物理 量子力学
作者
Saja Majeed Mohammed,Alyaa Al-Barrak,Noof T. Mahmood
出处
期刊:Ingénierie Des Systèmes D'information [Lavoisier publishing]
卷期号:29 (3)
标识
DOI:10.18280/isi.290336
摘要

The need for faster and more dependable wireless communication networks has encouraged the development of 6G networks.This article explores the integration of Mobile Edge Computing (MEC) cloud architectures and the potential of self-driving Vehicle-to-Everything (V2X) communication to achieve ultra-low latency and high dependability in 6G networks.By integrating MEC into the 6G network fabric, latency is reduced by bringing data processing closer to end-users, particularly vehicles, thus enhancing computational capabilities at the network's edge.The fusion of MEC with self-driving V2X communication holds the key to realizing the potential of 6G networks, enabling seamless communication among vehicles, roadside infrastructure, and individuals.Extensive testing and simulations predict that the 6G network's latency for User Equipments (UEs) will fall within an impressive range of 4ms to 10ms, unlocking new opportunities for missioncritical services, augmented reality, and real-time applications.The paper substantiates the dependability of 6G networks under various scenarios, ensuring a stable and reliable communication infrastructure.The objectives of the study are twofold: firstly, to evaluate the potential of MEC integration in 6G networks and its impact on reducing latency for endusers, particularly in the context of self-driving V2X communication; and secondly, to predict and verify the ultra-low latency capabilities of 6G networks for UEs through extensive testing and simulations, thereby enabling new opportunities for mission-critical services, augmented reality, and real-time applications.The real network simulation carried in the MATLAB environment shows that for UEs in the 6G network, the predicted latency will be approximately 4ms to 10ms, which showcasing unprecedented opportunity of possibilities in communication and services.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助Hong采纳,获得20
刚刚
华仔应助甜甜长颈鹿采纳,获得10
刚刚
么么叽发布了新的文献求助10
刚刚
无限的书南关注了科研通微信公众号
2秒前
3秒前
象牙板完成签到,获得积分10
3秒前
张馨友发布了新的文献求助10
4秒前
忙与闲都伤完成签到,获得积分10
5秒前
JamesPei应助晓军采纳,获得10
5秒前
5秒前
科研通AI5应助椒盐鲨鱼皮采纳,获得10
5秒前
善学以致用应助Jayjay采纳,获得10
6秒前
6秒前
7秒前
。。。完成签到,获得积分10
7秒前
8秒前
田乐天发布了新的文献求助10
8秒前
9秒前
猪猪hero发布了新的文献求助10
9秒前
10秒前
12秒前
刘陶发布了新的文献求助30
12秒前
chenSH发布了新的文献求助10
12秒前
晓军完成签到,获得积分20
12秒前
qww发布了新的文献求助10
13秒前
burningzmz完成签到,获得积分10
13秒前
平淡夏山关注了科研通微信公众号
13秒前
8R60d8完成签到,获得积分0
15秒前
科研通AI5应助笨笨钢笔采纳,获得30
15秒前
15秒前
16秒前
美丽迎梦完成签到 ,获得积分10
16秒前
16秒前
16秒前
lalala发布了新的文献求助10
17秒前
17秒前
zlf完成签到,获得积分10
17秒前
HEIKU应助林狗采纳,获得10
17秒前
bkagyin应助刘陶采纳,获得10
18秒前
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842319
求助须知:如何正确求助?哪些是违规求助? 3384417
关于积分的说明 10534630
捐赠科研通 3104925
什么是DOI,文献DOI怎么找? 1709841
邀请新用户注册赠送积分活动 823411
科研通“疑难数据库(出版商)”最低求助积分说明 774059