Enabling Technologies for Ultra-Low Latency and High-Reliability Communication in 6G Networks

低延迟(资本市场) 可靠性(半导体) 计算机科学 电信 计算机网络 功率(物理) 物理 量子力学
作者
Saja Majeed Mohammed,Alyaa Al-Barrak,Noof T. Mahmood
出处
期刊:Ingénierie Des Systèmes D'information [International Information and Engineering Technology Association]
卷期号:29 (3)
标识
DOI:10.18280/isi.290336
摘要

The need for faster and more dependable wireless communication networks has encouraged the development of 6G networks.This article explores the integration of Mobile Edge Computing (MEC) cloud architectures and the potential of self-driving Vehicle-to-Everything (V2X) communication to achieve ultra-low latency and high dependability in 6G networks.By integrating MEC into the 6G network fabric, latency is reduced by bringing data processing closer to end-users, particularly vehicles, thus enhancing computational capabilities at the network's edge.The fusion of MEC with self-driving V2X communication holds the key to realizing the potential of 6G networks, enabling seamless communication among vehicles, roadside infrastructure, and individuals.Extensive testing and simulations predict that the 6G network's latency for User Equipments (UEs) will fall within an impressive range of 4ms to 10ms, unlocking new opportunities for missioncritical services, augmented reality, and real-time applications.The paper substantiates the dependability of 6G networks under various scenarios, ensuring a stable and reliable communication infrastructure.The objectives of the study are twofold: firstly, to evaluate the potential of MEC integration in 6G networks and its impact on reducing latency for endusers, particularly in the context of self-driving V2X communication; and secondly, to predict and verify the ultra-low latency capabilities of 6G networks for UEs through extensive testing and simulations, thereby enabling new opportunities for mission-critical services, augmented reality, and real-time applications.The real network simulation carried in the MATLAB environment shows that for UEs in the 6G network, the predicted latency will be approximately 4ms to 10ms, which showcasing unprecedented opportunity of possibilities in communication and services.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
bias发布了新的文献求助20
3秒前
5秒前
6秒前
淡定枕头完成签到,获得积分10
7秒前
yx应助今我来思采纳,获得10
8秒前
8秒前
悦耳的黑米完成签到,获得积分10
9秒前
随心发布了新的文献求助10
10秒前
12秒前
13秒前
小鱼爱吃肉应助小琦琦采纳,获得10
14秒前
16秒前
老汤姆发布了新的文献求助10
17秒前
不安太阳完成签到,获得积分10
18秒前
20秒前
20秒前
jc完成签到,获得积分10
22秒前
hata233完成签到,获得积分10
23秒前
Yeah完成签到,获得积分10
23秒前
24秒前
rye发布了新的文献求助10
24秒前
24秒前
悦耳凡柔发布了新的文献求助10
25秒前
zyy完成签到,获得积分10
26秒前
ZSS发布了新的文献求助10
26秒前
缓慢的煎饼完成签到 ,获得积分10
26秒前
xbb完成签到,获得积分10
26秒前
随心完成签到,获得积分10
28秒前
28秒前
zyy发布了新的文献求助10
29秒前
小蘑菇应助旋转鸡爪子采纳,获得10
30秒前
小琦琦完成签到,获得积分10
31秒前
Marciu33应助老汤姆采纳,获得10
33秒前
做实验之前先上三炷香完成签到,获得积分10
34秒前
77发布了新的文献求助10
35秒前
li发布了新的文献求助10
35秒前
ZSS完成签到,获得积分10
37秒前
玛琳卡迪马完成签到,获得积分10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314113
求助须知:如何正确求助?哪些是违规求助? 2946546
关于积分的说明 8530432
捐赠科研通 2622170
什么是DOI,文献DOI怎么找? 1434347
科研通“疑难数据库(出版商)”最低求助积分说明 665268
邀请新用户注册赠送积分活动 650832