自愈水凝胶
材料科学
韧性
离子
介观物理学
偶极子
弹性体
电导率
离子电导率
纳米技术
导电体
离子键合
数码产品
固态
拓扑(电路)
化学物理
复合材料
工程物理
高分子化学
化学
凝聚态物理
物理化学
电气工程
电极
物理
有机化学
工程类
电解质
作者
Zhan Wang,Jianrui Zhang,Qi Zhang,Zhilu Ye,B. Li,Cuiling Zhang,Zihao Yang,Li Xue,Zeying Zhang,Feng Ma,Niancai Peng,Yi Lyu,Yaqiong Su,Ming Liu,Xiaohui Zhang
出处
期刊:Materials horizons
[The Royal Society of Chemistry]
日期:2024-01-01
卷期号:11 (17): 4159-4170
被引量:1
摘要
All-solid-state ionic conductive elastomers (ASSICEs) are emerging as a promising alternative to hydrogels and ionogels in flexible electronics. Nevertheless, the synthesis of ASSICEs with concomitant mechanical robustness, superior ionic conductivity, and cost-effective recyclability poses a formidable challenge, primarily attributed to the inherent contradiction between mechanical strength and ionic conductivity. Herein, we present a collaborative design of high-entropy topological network and multivalent ion-dipole interaction for ASSICEs, and successfully mitigate the contradiction between mechanical robustness and ionic conductivity. Benefiting from the synergistic effect of this design, the coordination, de-coordination, and intrachain transfer of Li
科研通智能强力驱动
Strongly Powered by AbleSci AI