Joint Objective and Subjective Fuzziness Denoising for Multimodal Sentiment Analysis

接头(建筑物) 计算机科学 降噪 人工智能 模式识别(心理学) 机器学习 工程类 建筑工程
作者
Xun Jiang,Xing Xu,Huimin Lu,Lianghua He,Heng Tao Shen
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tfuzz.2024.3405541
摘要

Multimodal Sentiment Analysis (MSA) aims at teaching computers or robotics to understand human sentiment with diverse multimodal signals, including audio, vision, and text. Current MSA approaches primarily concentrate on devising fusion strategies for multimodal signals and trying to learn better multimodal joint representations. However, employing multimodal signals directly is not appropriate since the human psychological states are fuzzy and can not be categorized easily, which undermines the effectiveness of existing methods. In this paper, we regard the natural fuzziness of human sentiments can be observed as two types: objective fuzziness introduced by human expression and subjective fuzziness caused by the complexity of human affection. Based on the assumption, we proposed a novel method termed Joint Objective and Subjective Fuzziness Denoising (JOSFD) , which introduced fuzzy logic into the multimodal fusion process and sentiment decision process to overcome the objective and subjective fuzziness. Specifically, our JOSFD method contains two key modules: (1) Modality-Specific Fuzzification Module leveraging uncertainty estimation and fuzzy logic to overcome the influence of objective fuzziness in different modalities in multimodal fusion. (2) Attitude-Intensity Representation Disentangling that learns joint representations for human attitude and sentiment strength separately and further employs fuzzy logic to decide the sentiment analysis results. We evaluate our proposed JOSFD method on three widely used MSA benchmark datasets, CMU-MOSI, CMU-MOSEI, and CH-SIMS. Extensive experiments demonstrate our proposed JOSFD method outperforms recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
肥陈完成签到,获得积分10
刚刚
香蕉觅云应助留胡子的霖采纳,获得30
刚刚
1秒前
易安应助kgdzj采纳,获得50
1秒前
科研通AI2S应助paulmichael采纳,获得10
3秒前
david发布了新的文献求助10
3秒前
成就猫咪发布了新的文献求助10
5秒前
上官若男应助彭于晏采纳,获得10
5秒前
科研小白完成签到,获得积分10
6秒前
6秒前
pennell01完成签到 ,获得积分10
7秒前
7秒前
不安的夜柳完成签到,获得积分10
8秒前
浅尝离白应助kgdzj采纳,获得50
8秒前
CipherSage应助留胡子的霖采纳,获得10
9秒前
9秒前
10秒前
Fiona03完成签到 ,获得积分10
10秒前
11秒前
babayan发布了新的文献求助10
11秒前
五哥完成签到,获得积分10
13秒前
威武的妍发布了新的文献求助10
13秒前
阿迪发布了新的文献求助10
14秒前
太叔丹翠完成签到 ,获得积分10
16秒前
jianmin发布了新的文献求助10
17秒前
平淡夏云发布了新的文献求助10
18秒前
19秒前
双夏完成签到 ,获得积分10
19秒前
20秒前
21秒前
威武的妍完成签到,获得积分10
21秒前
内向忆南完成签到,获得积分10
23秒前
24秒前
珂珂完成签到 ,获得积分10
25秒前
ShmilySherry发布了新的文献求助10
26秒前
内向忆南发布了新的文献求助10
27秒前
研友_VZG7GZ应助如一采纳,获得10
27秒前
28秒前
QYR完成签到,获得积分10
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140765
求助须知:如何正确求助?哪些是违规求助? 2791647
关于积分的说明 7799859
捐赠科研通 2447961
什么是DOI,文献DOI怎么找? 1302261
科研通“疑难数据库(出版商)”最低求助积分说明 626487
版权声明 601194