亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint Objective and Subjective Fuzziness Denoising for Multimodal Sentiment Analysis

接头(建筑物) 计算机科学 降噪 人工智能 模式识别(心理学) 机器学习 工程类 建筑工程
作者
Xun Jiang,Xing Xu,Huimin Lu,Lianghua He,Heng Tao Shen
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tfuzz.2024.3405541
摘要

Multimodal Sentiment Analysis (MSA) aims at teaching computers or robotics to understand human sentiment with diverse multimodal signals, including audio, vision, and text. Current MSA approaches primarily concentrate on devising fusion strategies for multimodal signals and trying to learn better multimodal joint representations. However, employing multimodal signals directly is not appropriate since the human psychological states are fuzzy and can not be categorized easily, which undermines the effectiveness of existing methods. In this paper, we regard the natural fuzziness of human sentiments can be observed as two types: objective fuzziness introduced by human expression and subjective fuzziness caused by the complexity of human affection. Based on the assumption, we proposed a novel method termed Joint Objective and Subjective Fuzziness Denoising (JOSFD) , which introduced fuzzy logic into the multimodal fusion process and sentiment decision process to overcome the objective and subjective fuzziness. Specifically, our JOSFD method contains two key modules: (1) Modality-Specific Fuzzification Module leveraging uncertainty estimation and fuzzy logic to overcome the influence of objective fuzziness in different modalities in multimodal fusion. (2) Attitude-Intensity Representation Disentangling that learns joint representations for human attitude and sentiment strength separately and further employs fuzzy logic to decide the sentiment analysis results. We evaluate our proposed JOSFD method on three widely used MSA benchmark datasets, CMU-MOSI, CMU-MOSEI, and CH-SIMS. Extensive experiments demonstrate our proposed JOSFD method outperforms recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
lilaccalla完成签到 ,获得积分10
31秒前
39秒前
1分钟前
1分钟前
2分钟前
2分钟前
伏城完成签到 ,获得积分10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
科研通AI5应助淡定友有采纳,获得10
2分钟前
华仔应助kmkm采纳,获得10
3分钟前
幽默的太阳完成签到 ,获得积分10
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
通科研完成签到 ,获得积分10
4分钟前
4分钟前
kmkm发布了新的文献求助10
4分钟前
5分钟前
快飞飞完成签到 ,获得积分10
5分钟前
5分钟前
jyf发布了新的文献求助10
5分钟前
jyf关注了科研通微信公众号
6分钟前
6分钟前
jyf发布了新的文献求助10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
淡定友有发布了新的文献求助10
6分钟前
7分钟前
7分钟前
faker完成签到,获得积分10
7分钟前
淡定友有完成签到,获得积分10
8分钟前
khaosyi完成签到 ,获得积分10
8分钟前
搜集达人应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
kmkm发布了新的文献求助10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155708
捐赠科研通 3245416
什么是DOI,文献DOI怎么找? 1792891
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216