Iterative Polygon Deformation for Building Extraction

分割 多边形(计算机图形学) 计算机科学 多边形网格 顶点(图论) 图像分割 点在多边形内 集合(抽象数据类型) 计算机视觉 模式识别(心理学) 计算机图形学(图像) 人工智能 理论计算机科学 图形 电信 帧(网络) 程序设计语言
作者
Yunhui Zhu,Buliao Huang,Yizhan Fan,Muhammad Usman,Huanhuan Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3396813
摘要

Building extraction is a fundamental task in remote sensing image processing and plays a crucial role in modern engineering. A number of studies perform building extraction by pixel-wise segmentation and have achieved impressive performance in producing binary (building and non-building) segmentation masks. However, it is challenging to convert these segmentation masks into a set of vector polygons required for geographic and cartographic applications. To combat this issue, contour-based methods propose to directly predict a set of building polygons. However, the accuracy of their generated building polygons might be compromised as they overlook the geometric characteristics of buildings or situations where some building vertices are not predicted. To tackle these challenges, this paper proposes an Iterative Polygon Deformation Algorithm (IPDA), which includes two essential modules: initial polygon generation and missing vertex recovery. The former generates a building polygon for each instance based on the geometry of buildings, while the latter iteratively recovers building vertices that have not been predicted. Experiments conducted on five challenging datasets show that IPDA achieves significant improvements while maintaining less inference time. Furthermore, the proposed IPDA can also be extended to other contour-based methods, enhancing their performance. The code is available at https://github.com/zhuyh1223/IPDA/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少年游完成签到,获得积分20
1秒前
1秒前
1秒前
烟花应助balelalala采纳,获得30
1秒前
1秒前
马儿扎哈完成签到,获得积分10
1秒前
Lin发布了新的文献求助10
2秒前
3秒前
why发布了新的文献求助10
3秒前
iamleopeng发布了新的文献求助10
3秒前
4秒前
4秒前
红莲墨生发布了新的文献求助10
4秒前
5秒前
lz应助火星上藏鸟采纳,获得10
6秒前
gdj发布了新的文献求助10
6秒前
7秒前
壮观依云发布了新的文献求助10
7秒前
Lucas应助Hans采纳,获得10
7秒前
7秒前
午见千山应助筱潇采纳,获得30
7秒前
和谐犀牛完成签到,获得积分10
8秒前
科研小驴发布了新的文献求助10
8秒前
Lucas应助而发的采纳,获得10
9秒前
sam完成签到,获得积分10
9秒前
学术搭子发布了新的文献求助20
10秒前
spwan应助壮观依云采纳,获得10
10秒前
wwwstt发布了新的文献求助10
11秒前
Hello应助Lin采纳,获得10
11秒前
when完成签到 ,获得积分10
12秒前
科研通AI2S应助无奈的囧采纳,获得10
13秒前
大模型应助阴间水蜜桃采纳,获得10
13秒前
十米完成签到 ,获得积分10
14秒前
汀烟应助asdfqwer采纳,获得10
14秒前
15秒前
15秒前
16秒前
孙庭芳完成签到,获得积分10
16秒前
16秒前
Endlessway应助淡淡的晓蓝采纳,获得20
17秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218137
求助须知:如何正确求助?哪些是违规求助? 2867491
关于积分的说明 8156426
捐赠科研通 2534366
什么是DOI,文献DOI怎么找? 1366941
科研通“疑难数据库(出版商)”最低求助积分说明 644892
邀请新用户注册赠送积分活动 617939