Iterative Polygon Deformation for Building Extraction

分割 多边形(计算机图形学) 计算机科学 多边形网格 顶点(图论) 图像分割 点在多边形内 集合(抽象数据类型) 计算机视觉 模式识别(心理学) 计算机图形学(图像) 人工智能 理论计算机科学 图形 电信 帧(网络) 程序设计语言
作者
Yunhui Zhu,Buliao Huang,Yizhan Fan,Muhammad Usman,Huanhuan Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3396813
摘要

Building extraction is a fundamental task in remote sensing image processing and plays a crucial role in modern engineering. A number of studies perform building extraction by pixel-wise segmentation and have achieved impressive performance in producing binary (building and non-building) segmentation masks. However, it is challenging to convert these segmentation masks into a set of vector polygons required for geographic and cartographic applications. To combat this issue, contour-based methods propose to directly predict a set of building polygons. However, the accuracy of their generated building polygons might be compromised as they overlook the geometric characteristics of buildings or situations where some building vertices are not predicted. To tackle these challenges, this paper proposes an Iterative Polygon Deformation Algorithm (IPDA), which includes two essential modules: initial polygon generation and missing vertex recovery. The former generates a building polygon for each instance based on the geometry of buildings, while the latter iteratively recovers building vertices that have not been predicted. Experiments conducted on five challenging datasets show that IPDA achieves significant improvements while maintaining less inference time. Furthermore, the proposed IPDA can also be extended to other contour-based methods, enhancing their performance. The code is available at https://github.com/zhuyh1223/IPDA/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
王明磊完成签到 ,获得积分10
1秒前
领导范儿应助别说话采纳,获得10
1秒前
2秒前
25上岸完成签到,获得积分10
2秒前
元谷雪发布了新的文献求助10
3秒前
3秒前
王松桐完成签到,获得积分10
3秒前
Fliu完成签到,获得积分10
4秒前
4秒前
4秒前
77发布了新的文献求助10
4秒前
Nin完成签到,获得积分10
4秒前
ZZ发布了新的文献求助10
4秒前
zy发布了新的文献求助10
5秒前
只强完成签到,获得积分10
5秒前
研友_VZG7GZ应助keke采纳,获得10
5秒前
爱吃果冻发布了新的文献求助10
5秒前
6秒前
Orange应助梅雨季来信采纳,获得10
6秒前
元神发布了新的文献求助10
6秒前
科勒基侈发布了新的文献求助10
6秒前
8秒前
jewel9发布了新的文献求助10
8秒前
南桥发布了新的文献求助10
9秒前
嘞是举仔应助无辜从阳采纳,获得30
9秒前
不明完成签到 ,获得积分10
10秒前
凡凡发布了新的文献求助10
10秒前
11秒前
小白完成签到,获得积分10
11秒前
13秒前
元谷雪发布了新的文献求助10
14秒前
香蕉觅云应助77采纳,获得10
15秒前
赘婿应助阿正嗖啪采纳,获得10
15秒前
15秒前
慕青应助28551采纳,获得10
16秒前
CipherSage应助俏皮的吐司采纳,获得10
16秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360