亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Iterative Polygon Deformation for Building Extraction

分割 多边形(计算机图形学) 计算机科学 多边形网格 顶点(图论) 图像分割 点在多边形内 集合(抽象数据类型) 计算机视觉 模式识别(心理学) 计算机图形学(图像) 人工智能 理论计算机科学 图形 电信 帧(网络) 程序设计语言
作者
Yunhui Zhu,Buliao Huang,Yizhan Fan,Muhammad Usman,Huanhuan Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3396813
摘要

Building extraction is a fundamental task in remote sensing image processing and plays a crucial role in modern engineering. A number of studies perform building extraction by pixel-wise segmentation and have achieved impressive performance in producing binary (building and non-building) segmentation masks. However, it is challenging to convert these segmentation masks into a set of vector polygons required for geographic and cartographic applications. To combat this issue, contour-based methods propose to directly predict a set of building polygons. However, the accuracy of their generated building polygons might be compromised as they overlook the geometric characteristics of buildings or situations where some building vertices are not predicted. To tackle these challenges, this paper proposes an Iterative Polygon Deformation Algorithm (IPDA), which includes two essential modules: initial polygon generation and missing vertex recovery. The former generates a building polygon for each instance based on the geometry of buildings, while the latter iteratively recovers building vertices that have not been predicted. Experiments conducted on five challenging datasets show that IPDA achieves significant improvements while maintaining less inference time. Furthermore, the proposed IPDA can also be extended to other contour-based methods, enhancing their performance. The code is available at https://github.com/zhuyh1223/IPDA/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助Jenny采纳,获得10
1秒前
完美世界应助yunshui采纳,获得10
3秒前
alter_mu发布了新的文献求助10
4秒前
天凉王破完成签到 ,获得积分10
10秒前
13秒前
20秒前
yunshui发布了新的文献求助10
20秒前
Timelapse应助科研通管家采纳,获得10
23秒前
38秒前
45秒前
55秒前
啦啦啦发布了新的文献求助10
58秒前
ding应助若宫伊芙采纳,获得30
1分钟前
1分钟前
研友_8WbP4Z发布了新的文献求助10
1分钟前
啦啦啦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
1分钟前
啦啦啦啦发布了新的文献求助10
1分钟前
2分钟前
平常囧完成签到,获得积分10
2分钟前
若宫伊芙发布了新的文献求助30
2分钟前
2分钟前
2分钟前
Jenny发布了新的文献求助10
2分钟前
田様应助小飞鼠爱丽丝采纳,获得10
2分钟前
景清发布了新的文献求助10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
ZanE完成签到,获得积分10
2分钟前
科目三应助简单的银耳汤采纳,获得10
2分钟前
CJH104完成签到 ,获得积分10
2分钟前
景清完成签到,获得积分10
2分钟前
义气的元绿完成签到,获得积分10
2分钟前
粗暴的坤发布了新的文献求助10
2分钟前
2分钟前
2分钟前
nihao完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788463
求助须知:如何正确求助?哪些是违规求助? 5707949
关于积分的说明 15473556
捐赠科研通 4916510
什么是DOI,文献DOI怎么找? 2646405
邀请新用户注册赠送积分活动 1594077
关于科研通互助平台的介绍 1548491