Iterative Polygon Deformation for Building Extraction

分割 多边形(计算机图形学) 计算机科学 多边形网格 顶点(图论) 图像分割 点在多边形内 集合(抽象数据类型) 计算机视觉 模式识别(心理学) 计算机图形学(图像) 人工智能 理论计算机科学 图形 电信 帧(网络) 程序设计语言
作者
Yunhui Zhu,Buliao Huang,Yizhan Fan,Muhammad Usman,Huanhuan Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3396813
摘要

Building extraction is a fundamental task in remote sensing image processing and plays a crucial role in modern engineering. A number of studies perform building extraction by pixel-wise segmentation and have achieved impressive performance in producing binary (building and non-building) segmentation masks. However, it is challenging to convert these segmentation masks into a set of vector polygons required for geographic and cartographic applications. To combat this issue, contour-based methods propose to directly predict a set of building polygons. However, the accuracy of their generated building polygons might be compromised as they overlook the geometric characteristics of buildings or situations where some building vertices are not predicted. To tackle these challenges, this paper proposes an Iterative Polygon Deformation Algorithm (IPDA), which includes two essential modules: initial polygon generation and missing vertex recovery. The former generates a building polygon for each instance based on the geometry of buildings, while the latter iteratively recovers building vertices that have not been predicted. Experiments conducted on five challenging datasets show that IPDA achieves significant improvements while maintaining less inference time. Furthermore, the proposed IPDA can also be extended to other contour-based methods, enhancing their performance. The code is available at https://github.com/zhuyh1223/IPDA/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大气摩托发布了新的文献求助10
刚刚
1秒前
天天发布了新的文献求助10
1秒前
1秒前
2秒前
Limerencia完成签到,获得积分10
3秒前
LMBE1K完成签到 ,获得积分10
4秒前
6秒前
jasmineee发布了新的文献求助10
6秒前
大个应助大气摩托采纳,获得10
6秒前
搞怪人雄发布了新的文献求助10
6秒前
椰子发布了新的文献求助10
6秒前
李怼怼发布了新的文献求助10
6秒前
平淡的鸿煊完成签到 ,获得积分10
6秒前
7秒前
7秒前
冷傲路灯发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
SciGPT应助嘻嘻采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
安静的冷亦完成签到,获得积分10
10秒前
思源应助不安万声采纳,获得10
10秒前
11秒前
无风发布了新的文献求助10
11秒前
asufga发布了新的文献求助10
11秒前
11秒前
12秒前
14秒前
房山芙完成签到,获得积分10
14秒前
胡不喇关注了科研通微信公众号
14秒前
14秒前
orixero应助谢大喵采纳,获得10
15秒前
高敏完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633215
求助须知:如何正确求助?哪些是违规求助? 4728654
关于积分的说明 14985295
捐赠科研通 4791156
什么是DOI,文献DOI怎么找? 2558773
邀请新用户注册赠送积分活动 1519196
关于科研通互助平台的介绍 1479516