Iterative Polygon Deformation for Building Extraction

分割 多边形(计算机图形学) 计算机科学 多边形网格 顶点(图论) 图像分割 点在多边形内 集合(抽象数据类型) 计算机视觉 模式识别(心理学) 计算机图形学(图像) 人工智能 理论计算机科学 图形 电信 帧(网络) 程序设计语言
作者
Yunhui Zhu,Buliao Huang,Yizhan Fan,Muhammad Usman,Huanhuan Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3396813
摘要

Building extraction is a fundamental task in remote sensing image processing and plays a crucial role in modern engineering. A number of studies perform building extraction by pixel-wise segmentation and have achieved impressive performance in producing binary (building and non-building) segmentation masks. However, it is challenging to convert these segmentation masks into a set of vector polygons required for geographic and cartographic applications. To combat this issue, contour-based methods propose to directly predict a set of building polygons. However, the accuracy of their generated building polygons might be compromised as they overlook the geometric characteristics of buildings or situations where some building vertices are not predicted. To tackle these challenges, this paper proposes an Iterative Polygon Deformation Algorithm (IPDA), which includes two essential modules: initial polygon generation and missing vertex recovery. The former generates a building polygon for each instance based on the geometry of buildings, while the latter iteratively recovers building vertices that have not been predicted. Experiments conducted on five challenging datasets show that IPDA achieves significant improvements while maintaining less inference time. Furthermore, the proposed IPDA can also be extended to other contour-based methods, enhancing their performance. The code is available at https://github.com/zhuyh1223/IPDA/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
乔沃维奇完成签到,获得积分10
6秒前
科目三应助shanshanlaichi采纳,获得10
6秒前
嘿嘿嘿发布了新的文献求助10
6秒前
研友_8yN60L完成签到,获得积分10
7秒前
乔乔兔应助向雨竹采纳,获得10
8秒前
啦啦发布了新的文献求助10
8秒前
wwho_O完成签到 ,获得积分10
9秒前
书生完成签到,获得积分10
9秒前
谢慧蕴完成签到,获得积分10
11秒前
瑞瑞刘完成签到 ,获得积分10
13秒前
轻松的幻嫣完成签到,获得积分10
17秒前
19秒前
Monicadd完成签到 ,获得积分10
23秒前
岁末完成签到 ,获得积分10
23秒前
年轻的冰海完成签到,获得积分10
25秒前
文武兼备完成签到,获得积分10
28秒前
idXin_Qing完成签到,获得积分10
30秒前
谨言完成签到 ,获得积分10
31秒前
Yyy发布了新的文献求助10
31秒前
dulong发布了新的文献求助10
32秒前
酷波er应助我爱科研采纳,获得10
32秒前
33秒前
斯文的小旋风完成签到,获得积分0
33秒前
34秒前
lyon完成签到,获得积分10
35秒前
刀锋发布了新的文献求助10
37秒前
ceeray23应助科研通管家采纳,获得10
37秒前
pluto应助科研通管家采纳,获得10
37秒前
李爱国应助科研通管家采纳,获得30
37秒前
lightgo应助科研通管家采纳,获得10
37秒前
37秒前
scm应助科研通管家采纳,获得50
38秒前
pluto应助科研通管家采纳,获得10
38秒前
38秒前
英姑应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
优秀醉易发布了新的文献求助10
38秒前
燕子发布了新的文献求助50
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993