Deep Augmented Metric Learning Network for Prostate Cancer Classification in Ultrasound Images

人工智能 计算机科学 公制(单位) 前列腺癌 深度学习 超声波 放射科 模式识别(心理学) 计算机视觉 癌症 医学 内科学 运营管理 经济
作者
Xu Lu,Yanqi Guo,Shulian Zhang,Yuan Yuan,Chun-Chun Wang,Zhao Shen,Shaopeng Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3396424
摘要

Prostate cancer screening often relies on cost-intensive MRIs and invasive needle biopsies. Transrectal ultrasound imaging, as a more affordable and non-invasive alternative, faces the challenge of high inter-class similarity and intra-class variability between benign and malignant prostate cancers. This complexity requires more stringent differentiation of subtle features for accurate auxiliary diagnosis. In response, we introduce the novel Deep Augmented Metric Learning (DAML) network, specifically tailored for ultrasound-based prostate cancer classification. The DAML network represents a significant innovation in the metric learning space, introducing the Semantic Differences Mining Strategy (SDMS) to effectively discern and represent subtle differences in prostate ultrasound images, thereby enhancing tumor classification accuracy. Additionally, the DAML network strategically addresses class variability and limited sample sizes by combining the Linear Interpolation Augmentation Strategy (LIAS) and Permutation-Aided Reconstruction Loss (PARL). This approach enriches feature representation and introduces variability with straightforward structures, mirroring the efficacy of advanced sample generation techniques. We carried out comprehensive empirical assessments of the DAML model by testing its key components against a range of models, ensuring its effectiveness. Our results demonstrate the enhanced performance of the DAML model, achieving classification accuracies of 0.857 and 0.888 for benign and malignant cancers, respectively, underscoring its effectiveness in prostate cancer classification via medical imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
recardo完成签到,获得积分10
1秒前
kourosz发布了新的文献求助10
1秒前
3秒前
酷波er应助兔农糖采纳,获得10
3秒前
不配.应助ABC采纳,获得20
8秒前
迪迦奥特曼完成签到,获得积分10
9秒前
oiioi发布了新的文献求助10
11秒前
13秒前
郑洲完成签到 ,获得积分10
15秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得30
16秒前
慕青应助科研通管家采纳,获得10
16秒前
堂风应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
paparazzi221应助科研通管家采纳,获得60
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
17秒前
18秒前
Nn发布了新的文献求助10
19秒前
22秒前
圆仔发布了新的文献求助10
23秒前
kleine完成签到 ,获得积分10
27秒前
NexusExplorer应助郑嘻嘻采纳,获得30
28秒前
30秒前
时光友岸完成签到,获得积分10
32秒前
星辰大海应助难过的安双采纳,获得10
35秒前
Akim应助fbbggb采纳,获得30
37秒前
37秒前
华仔应助qqesk采纳,获得10
37秒前
37秒前
机灵冰珍完成签到,获得积分10
39秒前
40秒前
蓝胖子应助Billy采纳,获得30
40秒前
聂立双完成签到 ,获得积分10
41秒前
狂野的冰真完成签到 ,获得积分10
41秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137758
求助须知:如何正确求助?哪些是违规求助? 2788672
关于积分的说明 7787968
捐赠科研通 2445026
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043