人工智能
计算机科学
公制(单位)
前列腺癌
深度学习
超声波
放射科
模式识别(心理学)
计算机视觉
癌症
医学
内科学
运营管理
经济
作者
Xu Lu,Yanqi Guo,Shulian Zhang,Yuan Yuan,Chun-Chun Wang,Zhao Shen,Shaopeng Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3396424
摘要
Prostate cancer screening often relies on cost-intensive MRIs and invasive needle biopsies. Transrectal ultrasound imaging, as a more affordable and non-invasive alternative, faces the challenge of high inter-class similarity and intra-class variability between benign and malignant prostate cancers. This complexity requires more stringent differentiation of subtle features for accurate auxiliary diagnosis. In response, we introduce the novel Deep Augmented Metric Learning (DAML) network, specifically tailored for ultrasound-based prostate cancer classification. The DAML network represents a significant innovation in the metric learning space, introducing the Semantic Differences Mining Strategy (SDMS) to effectively discern and represent subtle differences in prostate ultrasound images, thereby enhancing tumor classification accuracy. Additionally, the DAML network strategically addresses class variability and limited sample sizes by combining the Linear Interpolation Augmentation Strategy (LIAS) and Permutation-Aided Reconstruction Loss (PARL). This approach enriches feature representation and introduces variability with straightforward structures, mirroring the efficacy of advanced sample generation techniques. We carried out comprehensive empirical assessments of the DAML model by testing its key components against a range of models, ensuring its effectiveness. Our results demonstrate the enhanced performance of the DAML model, achieving classification accuracies of 0.857 and 0.888 for benign and malignant cancers, respectively, underscoring its effectiveness in prostate cancer classification via medical imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI