亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of brain-state dynamics involved in working memory

工作记忆 默认模式网络 认知灵活性 认知 灵活性(工程) 心理学 神经科学 集合(抽象数据类型) 认知心理学 计算机科学 数学 统计 程序设计语言
作者
Ying He,Xinyuan Liang,Menglu Chen,Ting Tian,Yimeng Zeng,Jin Liu,Lei Hao,Jiahua Xu,Rui Chen,Yanpei Wang,Jia-Hong Gao,Shuping Tan,Jalil Taghia,Yong He,Sha Tao,Qi Dong,Shaozheng Qin
出处
期刊:Cerebral Cortex [Oxford University Press]
标识
DOI:10.1093/cercor/bhad022
摘要

Human functional brain networks are dynamically organized to enable cognitive and behavioral flexibility to meet ever-changing environmental demands. Frontal-parietal network (FPN) and default mode network (DMN) are recognized to play an essential role in executive functions such as working memory. However, little is known about the developmental differences in the brain-state dynamics of these two networks involved in working memory from childhood to adulthood. Here, we implemented Bayesian switching dynamical systems approach to identify brain states of the FPN and DMN during working memory in 69 school-age children and 51 adults. We identified five brain states with rapid transitions, which are characterized by dynamic configurations among FPN and DMN nodes with active and inactive engagement in different task demands. Compared with adults, children exhibited less frequent brain states with the highest activity in FPN nodes dominant to high demand, and its occupancy rate increased with age. Children preferred to attain inactive brain states with low activity in both FPN and DMN nodes. Moreover, children exhibited lower transition probability from low-to-high demand states and such a transition was positively correlated with working memory performance. Notably, higher transition probability from low-to-high demand states was associated with a stronger structural connectivity across FPN and DMN, but with weaker structure-function coupling of these two networks. These findings extend our understanding of how FPN and DMN nodes are dynamically organized into a set of transient brain states to support moment-to-moment information updating during working memory and suggest immature organization of these functional brain networks in childhood, which is constrained by the structural connectivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡的衣发布了新的文献求助20
刚刚
1秒前
悲凉的忆南完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
6秒前
陈旧完成签到,获得积分10
6秒前
9秒前
9秒前
欣欣子完成签到,获得积分10
10秒前
虚拟的清炎完成签到 ,获得积分10
12秒前
sunstar完成签到,获得积分10
13秒前
XXXXXX发布了新的文献求助10
16秒前
yxl完成签到,获得积分10
17秒前
可耐的盈完成签到,获得积分10
20秒前
绿毛水怪完成签到,获得积分10
23秒前
yg发布了新的文献求助10
25秒前
lsc完成签到,获得积分10
27秒前
XXXXXX完成签到,获得积分10
29秒前
29秒前
星星科语完成签到,获得积分20
29秒前
小fei完成签到,获得积分10
31秒前
andrele发布了新的文献求助10
34秒前
麻辣薯条完成签到,获得积分10
34秒前
hanlin给滕祥的求助进行了留言
36秒前
时尚身影完成签到,获得积分10
38秒前
leoduo完成签到,获得积分0
41秒前
ryx发布了新的文献求助10
43秒前
流苏2完成签到,获得积分10
44秒前
45秒前
斯文败类应助科研通管家采纳,获得30
47秒前
上官若男应助科研通管家采纳,获得10
47秒前
52秒前
56秒前
绍华发布了新的文献求助10
1分钟前
可耐的月饼完成签到 ,获得积分10
1分钟前
RaskoRR发布了新的文献求助10
1分钟前
小小虾完成签到 ,获得积分10
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
CJH104完成签到 ,获得积分10
1分钟前
自信号厂完成签到 ,获得积分0
1分钟前
NexusExplorer应助ryx采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187