亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of brain-state dynamics involved in working memory

工作记忆 默认模式网络 认知灵活性 认知 灵活性(工程) 心理学 神经科学 集合(抽象数据类型) 认知心理学 计算机科学 数学 统计 程序设计语言
作者
Ying He,Xinyuan Liang,Menglu Chen,Ting Tian,Yimeng Zeng,Jin Liu,Lei Hao,Jiahua Xu,Rui Chen,Yanpei Wang,Jia-Hong Gao,Shuping Tan,Jalil Taghia,Yong He,Sha Tao,Qi Dong,Shaozheng Qin
出处
期刊:Cerebral Cortex [Oxford University Press]
标识
DOI:10.1093/cercor/bhad022
摘要

Human functional brain networks are dynamically organized to enable cognitive and behavioral flexibility to meet ever-changing environmental demands. Frontal-parietal network (FPN) and default mode network (DMN) are recognized to play an essential role in executive functions such as working memory. However, little is known about the developmental differences in the brain-state dynamics of these two networks involved in working memory from childhood to adulthood. Here, we implemented Bayesian switching dynamical systems approach to identify brain states of the FPN and DMN during working memory in 69 school-age children and 51 adults. We identified five brain states with rapid transitions, which are characterized by dynamic configurations among FPN and DMN nodes with active and inactive engagement in different task demands. Compared with adults, children exhibited less frequent brain states with the highest activity in FPN nodes dominant to high demand, and its occupancy rate increased with age. Children preferred to attain inactive brain states with low activity in both FPN and DMN nodes. Moreover, children exhibited lower transition probability from low-to-high demand states and such a transition was positively correlated with working memory performance. Notably, higher transition probability from low-to-high demand states was associated with a stronger structural connectivity across FPN and DMN, but with weaker structure-function coupling of these two networks. These findings extend our understanding of how FPN and DMN nodes are dynamically organized into a set of transient brain states to support moment-to-moment information updating during working memory and suggest immature organization of these functional brain networks in childhood, which is constrained by the structural connectivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
35秒前
43秒前
何88888888发布了新的文献求助10
48秒前
55秒前
57秒前
orchid完成签到,获得积分10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
Ming完成签到,获得积分10
1分钟前
好运常在完成签到 ,获得积分10
2分钟前
爆米花应助何88888888采纳,获得10
2分钟前
凌洛尘完成签到,获得积分10
2分钟前
2分钟前
何88888888发布了新的文献求助10
2分钟前
SciGPT应助何88888888采纳,获得10
3分钟前
3分钟前
科研通AI2S应助读书的时候采纳,获得10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
小马甲应助读书的时候采纳,获得10
3分钟前
3分钟前
何88888888发布了新的文献求助10
3分钟前
香蕉觅云应助读书的时候采纳,获得10
3分钟前
zxcvvbb1001完成签到 ,获得积分10
3分钟前
XXXXXX发布了新的文献求助10
4分钟前
4分钟前
4分钟前
artos发布了新的文献求助10
4分钟前
hhuajw应助读书的时候采纳,获得10
4分钟前
李健应助artos采纳,获得10
4分钟前
4分钟前
4分钟前
李爱国应助读书的时候采纳,获得80
4分钟前
吃狗粮的猫完成签到 ,获得积分10
4分钟前
田様应助读书的时候采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
hhuajw应助读书的时候采纳,获得10
5分钟前
何88888888发布了新的文献求助10
5分钟前
星辰大海应助读书的时候采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5687976
求助须知:如何正确求助?哪些是违规求助? 5062062
关于积分的说明 15193528
捐赠科研通 4846367
什么是DOI,文献DOI怎么找? 2598843
邀请新用户注册赠送积分活动 1550910
关于科研通互助平台的介绍 1509462