Development of brain-state dynamics involved in working memory

工作记忆 默认模式网络 认知灵活性 认知 灵活性(工程) 心理学 神经科学 集合(抽象数据类型) 认知心理学 计算机科学 数学 统计 程序设计语言
作者
Ying He,Xinyuan Liang,Menglu Chen,Ting Tian,Yimeng Zeng,Jin Liu,Lei Hao,Jiahua Xu,Rui Chen,Yanpei Wang,Jia-Hong Gao,Shuping Tan,Jalil Taghia,Yong He,Sha Tao,Qi Dong,Shaozheng Qin
出处
期刊:Cerebral Cortex [Oxford University Press]
标识
DOI:10.1093/cercor/bhad022
摘要

Human functional brain networks are dynamically organized to enable cognitive and behavioral flexibility to meet ever-changing environmental demands. Frontal-parietal network (FPN) and default mode network (DMN) are recognized to play an essential role in executive functions such as working memory. However, little is known about the developmental differences in the brain-state dynamics of these two networks involved in working memory from childhood to adulthood. Here, we implemented Bayesian switching dynamical systems approach to identify brain states of the FPN and DMN during working memory in 69 school-age children and 51 adults. We identified five brain states with rapid transitions, which are characterized by dynamic configurations among FPN and DMN nodes with active and inactive engagement in different task demands. Compared with adults, children exhibited less frequent brain states with the highest activity in FPN nodes dominant to high demand, and its occupancy rate increased with age. Children preferred to attain inactive brain states with low activity in both FPN and DMN nodes. Moreover, children exhibited lower transition probability from low-to-high demand states and such a transition was positively correlated with working memory performance. Notably, higher transition probability from low-to-high demand states was associated with a stronger structural connectivity across FPN and DMN, but with weaker structure-function coupling of these two networks. These findings extend our understanding of how FPN and DMN nodes are dynamically organized into a set of transient brain states to support moment-to-moment information updating during working memory and suggest immature organization of these functional brain networks in childhood, which is constrained by the structural connectivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ysx_fish发布了新的文献求助10
刚刚
落寞明雪完成签到,获得积分10
1秒前
nmamtf发布了新的文献求助10
1秒前
1秒前
Congying完成签到,获得积分10
1秒前
Bai发布了新的文献求助10
2秒前
2秒前
3秒前
zhoumaoyuan发布了新的文献求助10
3秒前
星辰大海应助森林采纳,获得10
3秒前
烂漫的豆芽完成签到,获得积分10
4秒前
4秒前
XING完成签到 ,获得积分10
4秒前
fufu发布了新的文献求助10
5秒前
欣喜石头发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
考拉王完成签到,获得积分10
6秒前
6秒前
笛飞声发布了新的文献求助10
7秒前
大模型应助痛失饭搭子采纳,获得10
7秒前
Hi_aloha完成签到,获得积分10
7秒前
胖飞飞完成签到,获得积分10
8秒前
8秒前
尘林完成签到,获得积分10
8秒前
Oliver完成签到,获得积分10
9秒前
丘奇发布了新的文献求助10
9秒前
猪猪hero发布了新的文献求助10
9秒前
科研通AI6应助zhoumaoyuan采纳,获得10
10秒前
X_XI完成签到,获得积分10
10秒前
饺子完成签到,获得积分10
10秒前
Zel博博完成签到,获得积分10
10秒前
CellularseHan1完成签到,获得积分20
11秒前
内向灵凡完成签到,获得积分10
11秒前
婷婷发布了新的文献求助10
11秒前
含蓄的明雪完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505397
求助须知:如何正确求助?哪些是违规求助? 4600897
关于积分的说明 14474868
捐赠科研通 4535091
什么是DOI,文献DOI怎么找? 2485112
邀请新用户注册赠送积分活动 1468204
关于科研通互助平台的介绍 1440675