Foundations of machine learning for low-temperature plasmas: methods and case studies

数据科学 计算机科学 人工智能 微电子 破译 机器学习 数据驱动 纳米技术 生物信息学 材料科学 生物
作者
Angelo D. Bonzanini,Ketong Shao,David B. Graves,Satoshi Hamaguchi,Ali Mesbah
出处
期刊:Plasma Sources Science and Technology [IOP Publishing]
卷期号:32 (2): 024003-024003 被引量:21
标识
DOI:10.1088/1361-6595/acb28c
摘要

Abstract Machine learning (ML) and artificial intelligence have proven to be an invaluable tool in tackling a vast array of scientific, engineering, and societal problems. The main drivers behind the recent proliferation of ML in practically all aspects of science and technology can be attributed to: (a) improved data acquisition and inexpensive data storage; (b) exponential growth in computing power; and (c) availability of open-source software and resources that have made the use of state-of-the-art ML algorithms widely accessible. The impact of ML on the field of low-temperature plasmas (LTPs) could be particularly significant in the emerging applications that involve plasma treatment of complex interfaces in areas ranging from the manufacture of microelectronics and processing of quantum materials, to the LTP-driven electrification of the chemical industry, and to medicine and biotechnology. This is primarily due to the complex and poorly-understood nature of the plasma-surface interactions in these applications that pose unique challenges to the modeling, diagnostics, and predictive control of LTPs. As the use of ML is becoming more prevalent, it is increasingly paramount for the LTP community to be able to critically analyze and assess the concepts and techniques behind data-driven approaches. To this end, the goal of this paper is to provide a tutorial overview of some of the widely-used ML methods that can be useful, amongst others, for discovering and correlating patterns in the data that may be otherwise impractical to decipher by human intuition alone, for learning multivariable nonlinear data-driven prediction models that are capable of describing the complex behavior of plasma interacting with interfaces, and for guiding the design of experiments to explore the parameter space of plasma-assisted processes in a systematic and resource-efficient manner. We illustrate the utility of various supervised, unsupervised and active learning methods using LTP datasets consisting of commonly-available, information-rich measurements (e.g. optical emission spectra, current–voltage characteristics, scanning electron microscope images, infrared surface temperature measurements, Fourier transform infrared spectra). All the ML demonstrations presented in this paper are carried out using open-source software; the datasets and codes are made publicly available. The FAIR guiding principles for scientific data management and stewardship can accelerate the adoption and development of ML in the LTP community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不二发布了新的文献求助10
1秒前
wangxx发布了新的文献求助10
1秒前
谨慎冰薇发布了新的文献求助10
1秒前
朱先生发布了新的文献求助10
1秒前
土豆淀粉完成签到 ,获得积分10
2秒前
柠小檬c发布了新的文献求助10
3秒前
3秒前
荷属安发布了新的文献求助10
4秒前
Owen应助zzj采纳,获得10
4秒前
7秒前
wlnhyF完成签到,获得积分10
8秒前
芝麻糊应助或者采纳,获得10
8秒前
金牌小魚仔应助顺顺顺采纳,获得10
8秒前
FashionBoy应助篮孩子采纳,获得30
11秒前
卷卷516发布了新的文献求助10
11秒前
谨慎冰薇完成签到,获得积分10
12秒前
小二郎应助wxnice采纳,获得10
12秒前
科目三应助tanjing0912采纳,获得10
14秒前
15秒前
CodeCraft应助俭朴尔竹采纳,获得10
17秒前
JJJJJin应助芝麻采纳,获得100
17秒前
共享精神应助柠小檬c采纳,获得10
18秒前
万能图书馆应助卷卷516采纳,获得10
18秒前
xialuoke发布了新的文献求助10
19秒前
20秒前
李爱国应助jy采纳,获得10
20秒前
22秒前
dc应助踏实紫烟采纳,获得10
24秒前
24秒前
ding应助iamnannan采纳,获得10
25秒前
shirelylee发布了新的文献求助30
25秒前
包容朝雪完成签到,获得积分10
25秒前
崔文兴发布了新的文献求助10
26秒前
26秒前
tanjing0912发布了新的文献求助10
28秒前
毛豆应助包容朝雪采纳,获得10
29秒前
科研通AI2S应助xialuoke采纳,获得10
29秒前
cdercder应助如泣草芥采纳,获得30
29秒前
30秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458644
求助须知:如何正确求助?哪些是违规求助? 3053442
关于积分的说明 9036584
捐赠科研通 2742678
什么是DOI,文献DOI怎么找? 1504484
科研通“疑难数据库(出版商)”最低求助积分说明 695312
邀请新用户注册赠送积分活动 694494