亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid machine learning model to optimize thermal comfort and carbon emissions of large-space public buildings

热舒适性 计算机科学 空格(标点符号) 人工神经网络 建筑工程 人工智能 机器学习 工程类 模拟 气象学 操作系统 物理
作者
Pujin Wang,Jianhui Hu,Wujun Chen
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:400: 136538-136538 被引量:20
标识
DOI:10.1016/j.jclepro.2023.136538
摘要

The use of the minimum energy to maintain the indoor thermal comfort of the large-space public building is always a challenging task due to the complex outdoor environment and indoor requirements. The lack of monitoring data and effective approaches limits the understanding of building thermal and energetic performance. This paper thus proposes a hybrid machine learning model based on factor generators and an optimization approach to address this research topic, aiming to provide the essential guide for future retrofit and design of large-space public buildings. The four machine learning (ML)-based factor generators are compared using the one-year monitoring data of building facility and indoor thermal management, where the high-performance multilayer perceptron neural networks (MLPNN) model is chosen as the data-driven method to generate the input data as the parent or intermediate populations in the GA optimization algorithm. Such a hybrid machine learning model can solve the multi-objective functions of thermal comfort and carbon emissions. The optimization results demonstrate that this model can achieve a maximum 29% improvement for thermal comfort and a reduction of 386.9 kg CO2 (11.06%) for carbon emissions in comparisons with the human-based management. Moreover, such hybrid machine learning model exhibits tolerance for moderate deficit in one objective. Therefore, the optimal thermal comfort and carbon emissions of large-space public buildings are achieved and thus contributing to the carbon neutrality in the building sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淼淼完成签到,获得积分10
3秒前
老天师一巴掌完成签到 ,获得积分10
15秒前
22秒前
螃蟹One完成签到 ,获得积分10
28秒前
开心的瘦子完成签到,获得积分10
32秒前
33秒前
40秒前
oia完成签到,获得积分10
49秒前
Raju发布了新的文献求助30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
雪白元风完成签到 ,获得积分10
1分钟前
caca完成签到,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
ESLG完成签到 ,获得积分10
1分钟前
1分钟前
爱科研的小凡完成签到,获得积分10
1分钟前
净净发布了新的文献求助30
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
TBI发布了新的文献求助10
2分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
妩媚的夏烟完成签到,获得积分10
2分钟前
QuIT完成签到 ,获得积分10
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482272
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388849
捐赠科研通 4512197
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1459016
关于科研通互助平台的介绍 1432418