A hybrid machine learning model to optimize thermal comfort and carbon emissions of large-space public buildings

热舒适性 计算机科学 空格(标点符号) 人工神经网络 建筑工程 人工智能 机器学习 工程类 模拟 气象学 操作系统 物理
作者
Pujin Wang,Jianhui Hu,Wujun Chen
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:400: 136538-136538 被引量:20
标识
DOI:10.1016/j.jclepro.2023.136538
摘要

The use of the minimum energy to maintain the indoor thermal comfort of the large-space public building is always a challenging task due to the complex outdoor environment and indoor requirements. The lack of monitoring data and effective approaches limits the understanding of building thermal and energetic performance. This paper thus proposes a hybrid machine learning model based on factor generators and an optimization approach to address this research topic, aiming to provide the essential guide for future retrofit and design of large-space public buildings. The four machine learning (ML)-based factor generators are compared using the one-year monitoring data of building facility and indoor thermal management, where the high-performance multilayer perceptron neural networks (MLPNN) model is chosen as the data-driven method to generate the input data as the parent or intermediate populations in the GA optimization algorithm. Such a hybrid machine learning model can solve the multi-objective functions of thermal comfort and carbon emissions. The optimization results demonstrate that this model can achieve a maximum 29% improvement for thermal comfort and a reduction of 386.9 kg CO2 (11.06%) for carbon emissions in comparisons with the human-based management. Moreover, such hybrid machine learning model exhibits tolerance for moderate deficit in one objective. Therefore, the optimal thermal comfort and carbon emissions of large-space public buildings are achieved and thus contributing to the carbon neutrality in the building sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶白发布了新的文献求助10
刚刚
李健的小迷弟应助大白采纳,获得10
刚刚
刚刚
huangying完成签到,获得积分20
1秒前
1秒前
稳重的若雁完成签到,获得积分10
1秒前
红莲墨生发布了新的文献求助10
1秒前
2秒前
所所应助Bart9999采纳,获得10
3秒前
司音发布了新的文献求助10
3秒前
······完成签到,获得积分10
3秒前
不懈奋进应助Wxx采纳,获得30
4秒前
Jeni发布了新的文献求助50
4秒前
田様应助何事惊慌采纳,获得10
4秒前
Mint发布了新的文献求助10
5秒前
burning关注了科研通微信公众号
5秒前
红莲墨生完成签到,获得积分10
5秒前
小陈完成签到,获得积分20
5秒前
RATHER发布了新的文献求助10
6秒前
Yleshu发布了新的文献求助10
7秒前
Apollonia完成签到 ,获得积分10
7秒前
8秒前
8秒前
NexusExplorer应助单薄绮露采纳,获得10
8秒前
木棉发布了新的文献求助10
10秒前
FashionBoy应助sustwanli采纳,获得10
10秒前
gjww应助我爱wmy采纳,获得10
11秒前
可靠画笔应助CG2021采纳,获得50
11秒前
CucRuotThua完成签到,获得积分10
12秒前
neinei完成签到 ,获得积分10
12秒前
九曲完成签到,获得积分10
12秒前
竹落笙笙发布了新的文献求助10
12秒前
TT完成签到,获得积分10
12秒前
哈哈哈发布了新的文献求助20
12秒前
13秒前
14秒前
田様应助TTD采纳,获得10
14秒前
救救我救救我救救我完成签到,获得积分10
15秒前
劲秉应助kakaC采纳,获得200
15秒前
缓慢的冰绿完成签到,获得积分10
16秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206338
求助须知:如何正确求助?哪些是违规求助? 2855867
关于积分的说明 8101167
捐赠科研通 2520814
什么是DOI,文献DOI怎么找? 1353830
科研通“疑难数据库(出版商)”最低求助积分说明 641841
邀请新用户注册赠送积分活动 612959