亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remote sensing of seasonal variation of LAI and fAPAR in a deciduous broadleaf forest

光合有效辐射 叶面积指数 物候学 天蓬 每年落叶的 环境科学 遥感 季节性 温带落叶林 天顶 生长季节 植被(病理学) 太阳天顶角 大气科学 地理 生态学 地质学 病理 生物 考古 光合作用 医学 植物
作者
Leticia X. Lee,Timothy G. Whitby,J. William Munger,Sophia J. Stonebrook,M. A. Friedl
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:333: 109389-109389 被引量:3
标识
DOI:10.1016/j.agrformet.2023.109389
摘要

Climate change is affecting the phenology of terrestrial ecosystems. In deciduous forests, phenology in leaf area index (LAI) is the primary driver of seasonal variation in the fraction of absorbed photosynthetically active radiation (fAPAR), which drives photosynthesis. Remote sensing has been widely used to estimate LAI and fAPAR. However, while many studies have examined both empirical and model-based relationships among LAI, fAPAR, and spectral vegetation indices (SVI) from remote sensing, few studies have systematically and empirically examined how relationships among these variables change over the growing season. In this study, we examine how and why seasonal-scale covariation differs among time series of remotely sensed SVIs and both LAI and fAPAR based on current understanding and theory. To do this we use newly available remote sensing data sets in combination with time series of in-situ measurements and a canopy radiative transfer model to analyze how seasonal variation in canopy and environmental conditions affect relationships among remotely sensed SVIs, LAI, and fAPAR at a temperate deciduous forest site in central Massachusetts. Our results show that accounting for seasonal variation in canopy shadowing, which is driven by variation in solar zenith angle, improved remote sensing-based estimates of LAI, fAPAR, and daily total APAR. Specifically, we show that the phenology of SVIs is strongly influenced by seasonal variation in near infrared (NIR) reflectance arising from systematic variation in the canopy shadow fraction that is independent of changes in LAI or fAPAR. Results of this work provide a refined basis for understanding how remote sensing can be used to monitor and model the phenology of LAI, fAPAR, APAR, and gross primary productivity in temperate deciduous forests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
菲比发布了新的文献求助10
1秒前
情怀应助人类不宜搞科研采纳,获得10
2秒前
3秒前
果果发布了新的文献求助10
6秒前
Haoru应助Captain采纳,获得30
6秒前
酷波er应助遇晚采纳,获得10
9秒前
夜夏完成签到,获得积分10
17秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
22秒前
绝望的大学生完成签到,获得积分20
22秒前
24秒前
boom完成签到 ,获得积分10
26秒前
27秒前
wwww完成签到 ,获得积分0
27秒前
27秒前
cwj完成签到,获得积分10
28秒前
Vince发布了新的文献求助10
31秒前
wangran_778发布了新的文献求助10
33秒前
39秒前
doctor_quyi发布了新的文献求助10
42秒前
wangran_778完成签到,获得积分10
44秒前
46秒前
47秒前
李义志完成签到,获得积分10
50秒前
50秒前
佳佳发布了新的文献求助10
50秒前
啊哦发布了新的文献求助30
51秒前
今后应助李义志采纳,获得10
53秒前
科研通AI6应助黄黄黄采纳,获得10
53秒前
无极微光应助缓慢的藏鸟采纳,获得20
54秒前
贱小贱完成签到,获得积分10
54秒前
ZYP发布了新的文献求助10
57秒前
科研狗完成签到 ,获得积分10
58秒前
无花果应助好了没了采纳,获得10
58秒前
科研通AI6应助啊哦采纳,获得30
1分钟前
黎娅完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
好了没了完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264