已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remote sensing of seasonal variation of LAI and fAPAR in a deciduous broadleaf forest

光合有效辐射 叶面积指数 物候学 天蓬 每年落叶的 环境科学 遥感 季节性 温带落叶林 天顶 生长季节 植被(病理学) 太阳天顶角 大气科学 地理 生态学 地质学 病理 生物 考古 光合作用 医学 植物
作者
Leticia X. Lee,Timothy G. Whitby,J. William Munger,Sophia J. Stonebrook,M. A. Friedl
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:333: 109389-109389 被引量:3
标识
DOI:10.1016/j.agrformet.2023.109389
摘要

Climate change is affecting the phenology of terrestrial ecosystems. In deciduous forests, phenology in leaf area index (LAI) is the primary driver of seasonal variation in the fraction of absorbed photosynthetically active radiation (fAPAR), which drives photosynthesis. Remote sensing has been widely used to estimate LAI and fAPAR. However, while many studies have examined both empirical and model-based relationships among LAI, fAPAR, and spectral vegetation indices (SVI) from remote sensing, few studies have systematically and empirically examined how relationships among these variables change over the growing season. In this study, we examine how and why seasonal-scale covariation differs among time series of remotely sensed SVIs and both LAI and fAPAR based on current understanding and theory. To do this we use newly available remote sensing data sets in combination with time series of in-situ measurements and a canopy radiative transfer model to analyze how seasonal variation in canopy and environmental conditions affect relationships among remotely sensed SVIs, LAI, and fAPAR at a temperate deciduous forest site in central Massachusetts. Our results show that accounting for seasonal variation in canopy shadowing, which is driven by variation in solar zenith angle, improved remote sensing-based estimates of LAI, fAPAR, and daily total APAR. Specifically, we show that the phenology of SVIs is strongly influenced by seasonal variation in near infrared (NIR) reflectance arising from systematic variation in the canopy shadow fraction that is independent of changes in LAI or fAPAR. Results of this work provide a refined basis for understanding how remote sensing can be used to monitor and model the phenology of LAI, fAPAR, APAR, and gross primary productivity in temperate deciduous forests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
钦钦关注了科研通微信公众号
2秒前
qiqi完成签到,获得积分10
2秒前
volunteer完成签到 ,获得积分10
3秒前
吃饼菜菜发布了新的文献求助10
4秒前
负责语海发布了新的文献求助10
5秒前
9秒前
13秒前
小秃子完成签到,获得积分10
17秒前
深情安青应助负责语海采纳,获得10
18秒前
迷路的台灯完成签到 ,获得积分10
18秒前
20秒前
nkuwangkai完成签到,获得积分10
21秒前
明朗完成签到 ,获得积分10
22秒前
23秒前
23秒前
貔貅完成签到,获得积分10
24秒前
sun发布了新的文献求助10
24秒前
旸旸完成签到 ,获得积分10
26秒前
1122334发布了新的文献求助30
30秒前
咦yiyi发布了新的文献求助10
34秒前
sun完成签到,获得积分10
36秒前
科研通AI6应助满意的不二采纳,获得10
37秒前
37秒前
Zzh完成签到,获得积分10
42秒前
43秒前
万能图书馆应助小易采纳,获得10
46秒前
吃饼菜菜完成签到,获得积分10
47秒前
pp完成签到,获得积分10
47秒前
WAR708发布了新的文献求助10
48秒前
赘婿应助心脏喷血采纳,获得10
53秒前
1分钟前
1分钟前
1分钟前
1分钟前
心脏喷血发布了新的文献求助10
1分钟前
科研通AI2S应助WAR708采纳,获得10
1分钟前
你嵙这个期刊没买完成签到,获得积分10
1分钟前
黄道婆发布了新的文献求助10
1分钟前
breeze完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616976
求助须知:如何正确求助?哪些是违规求助? 4701321
关于积分的说明 14913230
捐赠科研通 4747317
什么是DOI,文献DOI怎么找? 2549156
邀请新用户注册赠送积分活动 1512289
关于科研通互助平台的介绍 1474049