Remote sensing of seasonal variation of LAI and fAPAR in a deciduous broadleaf forest

光合有效辐射 叶面积指数 物候学 天蓬 每年落叶的 环境科学 遥感 季节性 温带落叶林 天顶 生长季节 植被(病理学) 太阳天顶角 大气科学 地理 生态学 地质学 病理 生物 考古 光合作用 医学 植物
作者
Leticia X. Lee,Timothy G. Whitby,J. William Munger,Sophia J. Stonebrook,M. A. Friedl
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:333: 109389-109389 被引量:3
标识
DOI:10.1016/j.agrformet.2023.109389
摘要

Climate change is affecting the phenology of terrestrial ecosystems. In deciduous forests, phenology in leaf area index (LAI) is the primary driver of seasonal variation in the fraction of absorbed photosynthetically active radiation (fAPAR), which drives photosynthesis. Remote sensing has been widely used to estimate LAI and fAPAR. However, while many studies have examined both empirical and model-based relationships among LAI, fAPAR, and spectral vegetation indices (SVI) from remote sensing, few studies have systematically and empirically examined how relationships among these variables change over the growing season. In this study, we examine how and why seasonal-scale covariation differs among time series of remotely sensed SVIs and both LAI and fAPAR based on current understanding and theory. To do this we use newly available remote sensing data sets in combination with time series of in-situ measurements and a canopy radiative transfer model to analyze how seasonal variation in canopy and environmental conditions affect relationships among remotely sensed SVIs, LAI, and fAPAR at a temperate deciduous forest site in central Massachusetts. Our results show that accounting for seasonal variation in canopy shadowing, which is driven by variation in solar zenith angle, improved remote sensing-based estimates of LAI, fAPAR, and daily total APAR. Specifically, we show that the phenology of SVIs is strongly influenced by seasonal variation in near infrared (NIR) reflectance arising from systematic variation in the canopy shadow fraction that is independent of changes in LAI or fAPAR. Results of this work provide a refined basis for understanding how remote sensing can be used to monitor and model the phenology of LAI, fAPAR, APAR, and gross primary productivity in temperate deciduous forests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢谢完成签到,获得积分10
刚刚
Winkhl发布了新的文献求助10
1秒前
光亮友安发布了新的文献求助10
1秒前
我我我我哦我玩完成签到,获得积分10
1秒前
Fengkai_CHEN完成签到,获得积分0
1秒前
有一个盆完成签到,获得积分10
1秒前
旺阿旺发布了新的文献求助10
1秒前
momi完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
CipherSage应助油菜籽采纳,获得10
3秒前
香蕉觅云应助utopia采纳,获得10
3秒前
3秒前
桐桐应助苹果邪欢采纳,获得10
3秒前
SciGPT应助graham1101采纳,获得10
4秒前
始于足下完成签到,获得积分10
4秒前
蛇蛇王子完成签到,获得积分10
5秒前
光影完成签到,获得积分10
5秒前
5秒前
LILI2完成签到,获得积分20
5秒前
CodeCraft应助xiaozhang采纳,获得10
5秒前
6秒前
iridium发布了新的文献求助10
6秒前
7秒前
Xx发布了新的文献求助10
8秒前
gjm完成签到,获得积分10
8秒前
斯文白白发布了新的文献求助10
8秒前
凶狠的谷蓝完成签到,获得积分10
8秒前
研友_kngjrL完成签到,获得积分10
9秒前
9秒前
今后应助qiaoxin采纳,获得10
10秒前
GUIGUI发布了新的文献求助10
10秒前
李舜达完成签到,获得积分10
11秒前
11秒前
xx完成签到,获得积分10
11秒前
11秒前
旺阿旺完成签到,获得积分10
11秒前
小马甲应助李婧薇采纳,获得10
12秒前
MX001发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958608
求助须知:如何正确求助?哪些是违规求助? 3504895
关于积分的说明 11120971
捐赠科研通 3236246
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871297
科研通“疑难数据库(出版商)”最低求助积分说明 802680