Remote sensing of seasonal variation of LAI and fAPAR in a deciduous broadleaf forest

光合有效辐射 叶面积指数 物候学 天蓬 每年落叶的 环境科学 遥感 季节性 温带落叶林 天顶 生长季节 植被(病理学) 太阳天顶角 大气科学 地理 生态学 地质学 病理 生物 考古 光合作用 医学 植物
作者
Leticia X. Lee,Timothy G. Whitby,J. William Munger,Sophia J. Stonebrook,M. A. Friedl
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:333: 109389-109389 被引量:3
标识
DOI:10.1016/j.agrformet.2023.109389
摘要

Climate change is affecting the phenology of terrestrial ecosystems. In deciduous forests, phenology in leaf area index (LAI) is the primary driver of seasonal variation in the fraction of absorbed photosynthetically active radiation (fAPAR), which drives photosynthesis. Remote sensing has been widely used to estimate LAI and fAPAR. However, while many studies have examined both empirical and model-based relationships among LAI, fAPAR, and spectral vegetation indices (SVI) from remote sensing, few studies have systematically and empirically examined how relationships among these variables change over the growing season. In this study, we examine how and why seasonal-scale covariation differs among time series of remotely sensed SVIs and both LAI and fAPAR based on current understanding and theory. To do this we use newly available remote sensing data sets in combination with time series of in-situ measurements and a canopy radiative transfer model to analyze how seasonal variation in canopy and environmental conditions affect relationships among remotely sensed SVIs, LAI, and fAPAR at a temperate deciduous forest site in central Massachusetts. Our results show that accounting for seasonal variation in canopy shadowing, which is driven by variation in solar zenith angle, improved remote sensing-based estimates of LAI, fAPAR, and daily total APAR. Specifically, we show that the phenology of SVIs is strongly influenced by seasonal variation in near infrared (NIR) reflectance arising from systematic variation in the canopy shadow fraction that is independent of changes in LAI or fAPAR. Results of this work provide a refined basis for understanding how remote sensing can be used to monitor and model the phenology of LAI, fAPAR, APAR, and gross primary productivity in temperate deciduous forests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Awake完成签到 ,获得积分10
刚刚
MRJJJJ完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
zhuosht完成签到 ,获得积分10
9秒前
exquisite完成签到,获得积分10
16秒前
枯叶蝶完成签到 ,获得积分10
18秒前
Lina完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
24秒前
松柏完成签到 ,获得积分10
33秒前
Junex完成签到 ,获得积分10
33秒前
村上春树的摩的完成签到 ,获得积分10
37秒前
机智的孤兰完成签到 ,获得积分10
39秒前
煲煲煲仔饭完成签到 ,获得积分10
42秒前
cata完成签到,获得积分10
42秒前
奥丁不言语完成签到 ,获得积分10
47秒前
高高菠萝完成签到 ,获得积分10
50秒前
Thi发布了新的文献求助10
50秒前
yangpengbo发布了新的文献求助10
50秒前
吃的饱饱呀完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
59秒前
爱做实验的宝宝完成签到,获得积分10
1分钟前
辛勤的泽洋完成签到 ,获得积分10
1分钟前
儒雅龙完成签到 ,获得积分10
1分钟前
wwwwwl完成签到 ,获得积分10
1分钟前
xiaomingdoc完成签到 ,获得积分10
1分钟前
张正友完成签到 ,获得积分10
1分钟前
livra1058完成签到,获得积分10
1分钟前
Augenstern完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小夜子完成签到 ,获得积分10
1分钟前
Cradoc完成签到 ,获得积分10
1分钟前
zj完成签到 ,获得积分10
1分钟前
谷谷完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xp1911发布了新的文献求助10
1分钟前
王佳豪完成签到,获得积分10
1分钟前
lily完成签到 ,获得积分10
1分钟前
QP34完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599910
求助须知:如何正确求助?哪些是违规求助? 4685672
关于积分的说明 14838778
捐赠科研通 4673518
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1471013